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PREFACE

The contact problem is one of the basic problems in the theory

of elasticity. Calculation of the many important parts, structures

and machines is based on the theory of the compression of elas-tic

bodies. However, this theory presents considerable mathematical

difficultles. The first correct solution of the basic case of the

contact problem was given by Hertzk as long ago as in 1882, and the
mathematical development of the problem set on this aolution for

approximately 60 years. During this period efforts of engineers

and theoreticians were directed mainly at the experimental checking

of the theory and the development of its applications in engineering

(works of academicians, A. N. Dinnik, N. M. Belyayev and others).

In the 1920's and especially 1930's and 1940's, the mathematical

base for the solution of the contact problem became quite different

from what it was in the second half of the last century. Hertz

used in his investigation only formulas from the theory of potential

of a uniform ellipsoid, which represents the simplest prototype

of solutions of problems of the theory of potential and theory of

integral equations; whereas, starting approximately from the 1930's

we had available the powerful, developed by us in the Soviet Union,

apparatus of the resolution of problems of the theory of elasticity,

'Hertz H., Gesammelte Werke, t. 1 Leipzig, 1895, str. 155.
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and the other one - in his monograph, "Singular integral equations"

and in articles preceding it. In these books extensive bibliographic

data can be found. Let us note that in science, to a certain degree

of the related theory of elasticity, namely, in hydro- and aero.-

dynamics, for a long time in resolution of problems about two-dimen-

sional motion of liquid and about the lift of a wing functions of the

complex variable and singular integral equations were used.

It is quite natural that in the Soviet Union a number of works

have appeared in which the contact problem of the theory of elasticity

has received substantial improvement and development.

For the first time solutions of new contact problems, which are

a generalization of the basic case, were given by me'. In subsequent

articles2 I obtained the solution of a number of other problems,

using partly the mathematical apparatus created by Academician A.
M. Lyapunov 3 .

Very valuable solutions were obtained by a number of authors, f
especially in the school of N. I. Muskhelishvili4 , and also by

L. A. Galin 5 , A. I. Lur'yeG, G. N. Savin7 and others. Thus, at

present the theory of the contact problem has attained such great

development that it can be examined as a large independent branch

of the theory of elasticity, which has an important practical value

for a calculation of parts of structures and machines.

1Shtayerman I. Ya., K teorii Gertsa mestnykh deformatsiy pri
szhatii uprugikh tel (On the theory of Hertz of local deformations
with the compression of elastic bodies). Doklady AN SSSR, t. XXV,
No. 5, 1939.

2Shtayerman I. Ya., Obobshcheniye teorii Gertsa mestnykh
deformatsiy pri szhatii uprugikh tel (Generalization of the theory
of Hertz of local deformations with the compression of elastic bodies)
(Doklady AN SSSR, t. XXIX, No. 3, 1940). Mestnyye deformatsii pri
szhatii uprugikh krugovykh tsilindrov, radiusy kotorykh pochti ravny
(Local deformations with the compression of elastic circular cylinders,
the radii of which are almost equal) (Doklady AN SSSR, t. XXIX,
No. 3, 1940). K voprosu o mestnykh deformatsiyakh pri szhatil
uprugikh tel (On the question of local deformations with the

FTD-MT-24-61.- 70 vi



One of the neceasary prerequisite3 for this is the bringing of

the mathematical theory of the contact problem to the theoretical

engineers.

The account of our book has been given in such a manner so that

it with a few exceptions is accessible to the engineer familiar with

a course of higher mathematics of a technical college and having

certain experience in the reading of mathematical literature.

--. The .t4nre first chapter of book is devoted to methods of

the solution of fundamental equations of the contact problem We

try to combine the simplicity of the account with proper fullness

of the mathematical scope.

The second part contains, together with the classical investiga-

tions, an account of certain works of Soviet mathematicians on the

two-dimentional contact problem of the theory of elasticity, including

my works, part of which has been published for the first time''4hese

include; a new formulation of the problem on the pressure of a stamp

[FOOTNOTE CONT'D FROM PRECEDING PAGE].

compression of elastic bodies) (Doklady AN SSSR, t. XXXI, No. 8, 1941).
Nekotoryye osobyye sluchai kontaktnoy zadachi (Certain special cases
of contact problem) (Doklady AN SSSR, t. XXXVIII, No. 7, 1943).
Ob odnom obobshchenii zadachi Gertsa (On one generalization of the
problem of Hertz) (Zhurnal "Prikladnaya matematika i mekhanika",
t. 7, vyp. 3, 1941).

3Liapounoff A., Sur les figures d'equilibre, III chast',
St. Petersbourg, 1912.

4See Muskhelishvili N. I., Singulyarnyye integral'nyye uravneniya
(Singular integral equations), Gostekhizdat, 1946

5Galin L. A., Issledovaniyye smeshannykh zadach teorii uprugostm
(Investigation of mixed problems of the theory of elasticity)
(Doktorskaya dissertatsiya, (Doctoral Dissertation) Institut
mekhantih AL), Moskva, 1946.

6Lur'ye A. I., Nekotoryye kontaktnyye zadachi teorii uprugosti.
Zhurnal (Certain contact problems of the theory of elasticity.
Journal) "Prikladnaya mekhanika i matematika", t. V, vyp. 3, 1941.

7DAN URSP No. 6, 1939; No. 7, 1940; Soobshcheniya Gruzinskogo
Filiala AN SSSR, t. I. No. 10, 1940 g.
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) on an elastic half-plane, d7H Tn § 3f--p~te I, and the

periodic contact problem,, which comprises content of § 5 of Chapter

In § 8 of Chapter II an attempt is made to calculate surface

deformations, which up till now were not calculated in the theory

of the contact problem. I

Chapter III gives a number of new solutions~e4 an axisymmetric

contact problem of the theory of elasticity. ,

In Chapter IV, together with the classical solutions, a number

of new solutions belonging to the authors is given.

Q " I
The book should be~e~amlyrd as a division of the mathematical

theory of elasticity, since it is devoted to the solution of basic

contact problems of the theory of elasticity.....
V,-

Basic information on the theory of the contact problem can be

found in courses of Academician L. S. Leybenzon ' and S. P. Timoshenko 2.

1Leybenzon L. S., Kurs teorii uprugosgi,(Course of the theory
of elasticity), Gostekhizdat, 1947.

2Timoshenko S. P., Teoriya uprugosti (Theory of elasticity),
ONTI, 1937.
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CHAP TER I

, % MATHEMATICAL INTRODUCTION'

§ 1. Reduction of the Fundamental Equation of
the Tvo-Dimensloal Ohtact-Problem to

the DirIchlet Problem for a ircie

Let us gein from the consideration of the fundamental equation

of the two-dimenstionsl contact problem of the theory of elasticity:

~a.

~(1)

where f(x) is function assigned inside the interval (-.4, (O is the

unknown function, which must be determined, inside interval (-a, a)

in such a manner so that equation (1) is satisfied. Relative to

the assigned function f(x) we will assume that it is continuous,

and a derivative of it f'(x) can have points of discontinuity inside

the interval (-a, a).

Let us consider the function of two variable

V (X, S P F(s) in -1,0(2)
where -0

Ri' V z--I Y+? (3)

When y = 0 R' turns into I:-$ and function V(z, y) turns into the

left site of equation (1). Thus, equation (1) is equivalent to the

In this chapter we give in detail and as elementary as possible
the discussed solutions of certain equations on which the theory of
the contact problems, placed in Chapter II is based.

FTD-MT-24-61-70 I



condition

Vfxf, r(K -0<2<6 (4Y

Imposed on function V(x, y). Function V(x, y), defined by relation

(2)x is called the logarithmic potential of the simple layer on the

segment of the 0x - <C with density p(t). Solution of the

initial equation (1) is equivalent to the detecting of the density

of the simple layer, the logarithmic potential of which V(x, y) turns

into the assigned function f(x) on the segment of -<z<a. Before

turning to the solution of this problem, let us investigate in

greater detail properties of the potential of the simple layer

V(z, y), If the point with coordinates x, y does not lie on the

segment of 09 -a<x<a partial derivatives of function V(x, y) can

be calculated by direct differentiation under the integral sign in

the right side of relation (2).

Consecutively we find:

* 1.

Hence or it A. *P () (z-- 9) d OV"s V)' (PQ vd

W- S (z - -. +.'

-a

From relation (5) it is obvious that function V(x, y) satisfies

the partial differential equation

7 7- rU. (6)

FTD-T-24-61-70



Differential equation (6) is called the Laplace equation: any

function satisfying the Laplace equation is called the harmonic

function. Thus, function V(x, y everywhere in plane xOy, with the

exception of points of the segment of -<z(4, of the Ox axis is

of a harmonic function.

Let us investigate now the behavior of the partial derivative

with the approach of the point with coordinates x, y to the

segment of the Ox axis -a<z<& When -G<z<a the definite integral,

which determines the derivative'- ,in formulas (5), can be divided in-

to three integrals:

S(8) 9dt

~ ~I!AP p(1) d, Pt)a
(7)

The second of the definite integrals of the right side of formula

(7) in turn can be represented in the form of the sum of two integrals:

P M~ de ai

-v /-')1PS5 (8)

if function p(t) is continuous at point t x.

Thus,

8v(,.g). JA(Z, D) is (C, Y) + is (Z.g) + J4 (2, Y),
(9)

where

FTD-MT-2J-61-70



*g-, % I .

,(x, -•(12)

Assuming in (10) y 0, we will find

A,(S-OPZ.(6," -0o (13)

since in definite integrals

-~8 p(8).S 1 sand (4

integrands are limited, and, consequently, the very definite integrals

(14) are limited. Assuming

we will find:

u-S

where

".'a"°. (°'.<j). (16)

Substituting (15) into (11), we will find

A(,y) - -- 2:tp(z1,"
firl

or

14



Js~,N3-2,pz)when Vt>Q.
",( , t 2 zp( ) when y<O.J (17)

As can be seen from (16),
I

auw2 when y-0.(1)

Thus, if coordinate y tends to zero, remaining positive, function

J3(x, y) tends to the limiting value -=p(z); if coordinate y approaches

zero, remaining negative, function J3(x, y) approaches the value =p(z).

Function J3(x, y) undergoes discontinuity when y a 0,

J,(z, +O)-a--up(z). J,(z, -0)-imp(z); (19)

here J (x, + 0) and J3(x, -0) denote the limiting values of function

J3(x, y) on various sides of the point of discontinuity.

Using relations (13) and (19), from formulas (9) we will find

aV (Z. +0)

From (12) we find

~s4e

1jJ(4)I<1,YI 3 - (21)

where n is the maximum absolute value of the difference p(l)-p(z) when
S Z-449 F+s. Since function p(t) by assumption is continuous at

point t = x, then n will be as small as desired at sufficiently small

c. Substituting (15) into (21) and taking into account (16), we will

find

., <,)I 22,.q<, (22)

5



On the basis (22) from (20) it follows that

-0) (23)

Since inequalities (23) are accurate at any c as small as desired,

and q approaches zero together with e, then

aV (Z. + 0) Wdy 0 =,i€ p (24)

if at point t = x function p(x), does not undergo discontinuity.

Let us investigate now the behavior of function V(x, y) with

removal at infinity of the point with coordinates x, y. Assuming

in (3)

x=rCof,?, YL'PoW;YI

we will find

In In -n 1-2 7 cos+ . (25)

Substituting (25) into (2), we will find

* '!

-0

P- p(L)In /1 2c03 + "di, (26)

6



where the right side of equality (26) approaches zero when r .

Introducing the designation

dt(27)

we will find

it.~e r-o~ (ui~iii~.(28)

Thus, the solution of the initial equation (1) is reduced by us

to the construction of function V(x, y), harmonic in the whole plane

X, y, except points of the segment of the axis Ox -a<z<a, and

satisfyirg conditions (4) and (28)1. Having constructed function

v(x, y), we will find the unknown function p(x) according to one of

the formulas (24).

Before turning to the construction of function V(x, y), let us

show one important property which the Laplace equation (6) possesses.

Let us produce in this equation the change in variables x, y by

variables c. n, having assumed that

1 C29)

Consecutively we find

'The problem of construction of the harmonic function according
to boundary values assigned to it in the theory of potential is
called the Dirichlet problem. The existence and uniqueness of the
solution of this problem are probem with very general assumptions.
In our book these investigations are not discussed.

7



av vIS ave.
- W -  (30)

ar aVr axav or
(31)

a " a , as,% ,I all" ava + asvf ~v at$, + av ati
+ 2 ' Oz UtOt(5.)+OV8I*+8VO (32)

t a

'IT 64 (33)

whence

av o'0V oCU aov (z84 *za t]~~~ ~ +"+,,,+.
'O++ 0 k + av+ + a4 .- (34)

Let us now connect function y(E, n) with function x(E, n) by relations

al as (35)

The necessary and sufficient condition of the existence of

function y(E, n), which satisfies relations (35), is the condition

i.e., condition

(L 0 (36)

If condition (36) is fulfilled, then function Y(E, n) can be

found by function x(U, n) from relation (35) by means of quadratures.

Here function y(F, n) will be determined with an accuracy of the

arbitrary constant term. From relations (35) it follows that the

thus found Y(&, n) will satisfy equation

al, !.. 0. (37)

8



Thus, If two functions x(C, n) and y(4, n) satisfy conditions (35).

they must be harmonic functions, as one can see from (36) and (37).

If harmonic functio.i x(E n) is assigned, then harmonic function

y(C, n), connected with it by conditions (35) can be found by means

of quadratures with an accuracy up to the arbitrary constant component.

Under conditions (35) the harmonic function y(g, n) is called the

function conjugate with the harmonic function x(-, r).

Substituting (35) into (3 4 ) and taking into account (36) and (37),

we will find that under conditions (35) the relation will take placeI a* al fV. 1 (38)

This relation shows that if function V(x, y) satisfies the Laplace

equation (6), then after a change in variables (29) this function

will satisfy equation

(39)

i.e., the Laplace equation retains its form with a change in variables

(6) if conditions (35) are fulfilled. In other words, if in the

expression for the harmonic function V(x, y) a change in variables

x, y is produced by variables , n, then we will again obtain the

harmonic function of new variables E, n under conditions (35). This

property of harmonic functions is widely used in the solution of the

boundary value problems. Actually, if it is required to construct

function V(x, y), which is harmonic in a certain region g and satisfies

the assigned boundary conditions on the boundary of this region, then

by producing a change in variables x, y by variables C, n, we will

arrive at the problem of construction of the harmonic function of

new variables , according to boundary conditions assigned already

on the boundary of the new g*, into which region g passes as a

result of the transformation of the variables. In particular, if

one were to find function x(C, n) and y(E, n), which satisfy

conditions (35) and transfer region g in plane xOy into a circle

j1+7114 in plane ECn, then it is possible to reduce the construction

9



of the harmonic function according to boundary conditions assigned

on the boundary of region g to the construction of the harmonic

function according to boundary conditions assigned on the circle.

By examining the solution of the initial equation (1), we

arrived at the construction of function V(x, y), harmonic in the

whole plane xoy with the exception of tChe segment of the Ox -a<z<a,

according to the boundary condition (4) and subsidiary condition (28).

Let us show that the transformation of variables x, y into variables

~, 11

satisfies conditions (35) and turns the whole plane xoy , with the

exception of the segment of the Ox axis -a<x<a, Into the circlej

on plane on (solving (40) relative to and n, we will

obtain two real solutions; froo these solutions below we will take

for which ~'~)

Differentiating (40), we will find

a+ (+141) ax
th uri±. (41))'3

Thus, conditions (35) are satisfied. Assuming in ( c40)

s-fPCOSO, iti (Pi)nt sh (42)

i.e., passing to polar coordinates pe on plane Cn, we will find

fo2 (p Phi)ch 8 3

1 (P Zno (41)

10
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whence

I

Equation (44" shows that points of the plane EOn, lying on the circle

of radius p:

+ 1, -P, (P < ly, ( 45)

correspond the point of plane xOy lying on the ellipse (44) with

semiaxes if[p and -1 1). When the radius of the circle p

approaches zero, the semiaxes of the ellipse increase without limit,

point p - 0 in plane On corresponds' to the point at infinity of

plane xOy When p approaches unity, the semimajor axis of the ellipse

approaches a, the semiminor axis of the ellipse

approaches zero, and circ2e p = 1 on plane &On corresponds to the

segment of the axis Ox -<x<a. From (43) it is clear that

Y <0 hen 0 < %. (46 )

Thus, the upper semicircle p = i on plane &On corresponds to the

lower side of the segment of the axis OX -a<Z<a and the lower

semicircumference - to the upper side of this segment. Assuming

p = 1 in the first of relations (43), we will obtain the dependence

x-acos,% (117)

which connects the position of the point on the segment of the Ox

axiR -a<:<a with the position of the point ,orresponding to it

on the circle p = 1 in plane EOn.

Thus, if in the expression for the unknown function V(x, y),

har-monic outside tne segment of the Ox axis -a<z<a, one replaces

variables x, y by variables C, n according to (40), then we will

obtain the function of variables &, n, harmonic inside the

ii



circumference '+i{=I, ie., satisfying inside this circumference the

Laplace equation (39) in variables , r. Boundary condition (4),

according to 47), will take the form:

!V-GO When (148)

From (39) we find

Milo+
-Mc

whence

29 1. 
(49)2

Taking the Logarithm of (49), we will find

Hence

In-to 0 when P-O ..- .(51)

On the basis of (51) we find that condition (28) will now take

the form

V-PID 0 ,ien - 0, (52)
a

Thus, the solution of the initial equation (1) was reduced to

the construction of function V, which satisfies the Laplace equation

(39) inside the circumference V-! (?*a V't') and conditions (48) and

(52) on the circumference p = 1 ana at the beginning of coordinates

P = 0. Using the relations (143), we will find:

0), a. _l x 8dy ay

-7 [ s ('- o+L" 14,. >1,ino] ( 53)

12



whence

lim O'-' glira UMd2 (54)

sincP Y 0, when p 1 1. But, as one can see from (46), when 0<0<u

S--'-(i.e., approaches zero, remaining negative') when p 1 1, and

when c<8<2 y-.+O, when p -* 1. Thus, according to (54)

(0_) aizn when 0<0<r, }
aIn0we c<0<U (55)

Substituting (24) into (55), we will find

-). , = asin0p(acos0) when0< 8< i (

-asin0p(aco30) whent < 0 < 2x

(we replaced argument x of function p(x) by acoso according to (47)).

Relations (56) can be given the form

V416 0 Ji ~P (aCOS 0)' ( < 042,). (57)

Having constructed the unknown function V, which satisfies when

p 1 the Laplace equation (39) and satisfies conditions (48) and

(52) when p = 1 and when p = 0, we will find the unknown 'unction

from the relation (57).

Let us turn in the Laplace equation (39) from rectangular

coordinates E, q to polar coordinates p,O, assuming

I"PCO, ')-psuib.

13



Let us find

a~v or

+2 ar. ,.

- -- F..a

Pein 0 - eoses + jpeeweu-

-rpcoo- gpdin#

Hence

i+ v + 1oW a'V oaW
of I 6-P IV R (58)

Thus, if in rectangular coordinates , n function V satisfies the

differential equation (39), then in polar coordinates p,0 this function

V satisfies the differential equation

0 1aV 1a l awv .a3Iv + t "v+ ar ego. (59 )

Let us now examine function

IV(?,o)-v- ,V-l. (60)

Substituting V from (60) into (59), we will find

al17 +1 aOW +. W(1-ji+t"+ -- T O .. (61)

i.e., function W(9,O), defined by relation (60), will also satisfy

the Laplace equation in polar coordinates. On the basis (48) and

(52) we will find

14
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IV 0 -1*64) pin 2-6(62>

IV (0, 0) *a t 9P(63)

SubstItuting V from (60) into (51), we will find

whence

Thus, having discovered functioni ,O),which satisfies the

differential equation (61) when p < 1 conditions (62) and (63) when

p " I and p a 0, we will find the unknown function p from the relation

(64). The construction of the function, harmonic inside the given

circumference and taking the rated values on this circumference, is

the subject of the following paragraph.

§ 2. Certain Methods of Resolution of
the Dirichlet problem for a Circle

Let us expand functionV(1, 0) of argument 0, defined by relation

(62), in Fourier series. Since function W(1,G),according to (62),

ts even, i.e., W(1,-),,W(1,0), this series will contain only cosines

of angles multiple of 0, i.e., it will have the form

W(, O)-/( Co0)-p ;m ,+ , CO3A8. (65)

Coefficients of this Fourier series *, ,,,... can, as is known, be

found by means of quadratures by formulas



$~ I

b

or

is a(66)

Let us now show that function W(,O)," wich satisifes the
differential equation (61) when pc 1 and condition (65) when p 1,

can be found in the form of the series

(67)

Let us find

a. - C3 i)c (68)

Substituting (68) into (61), we will find

a+ +- " - ) +

i.e., function W(.O), defined by series (67), indeed satisfies the

differential equation (61).

Assuming in (67) p = 1, we will be convinced in the fact that

condition (65) is fulfilled.
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Substituting (67) into (63), we will find that equality should

take place

(69)

Condition (69) determines the constant P, which up till now has

remained indefinite. Actually, by assuming a from (66) into (69))

we will find

26

(70)

I
Substituting (67) into (64), we will find

p(acoO)m z 1  (71)

We will not touch upon the question about the convergence of series

formally obtained-by us (71).

Substituting , from (70) and (66) into (71) and replacing

in (71) 4c2sO by x, we will find the unknown solution p(x) of the

initial equation (1).

Let us examine the examples.

1) I(z)-3'-co 5L (72)

As can be seen from (66), in this case

From (70) we find

P.- (73)

17



?ormula (71) gives :

Assuming 8ems m, we will find

Po

P( (74)

Formulas (74) and (73) give for the given example the solution of

the initial equation (1).

2) f(z)-c-A. (75)

In this case

I(acosO})-- Aato4'o' - -4.Ac - Aa, os2

whence, on the basis of (66) and (70),

PASa, y-Aa -

"(76)

From (71) we find

p(oC03b) - i. (P-a'4COs20)-

Assuming in this relation sCoOm -, we will find

P P + a,-24 (77)

18



Formulas (77) and (76) give the solution of the initial equation

(1) for the case when the right side of this equation f(x) has the

form of (75).

In general the formula (71) established by us gives the solution

of the initial equation (1) in the form of an infinite series.

Let us now show another procedure of resolution of the problem,

which made possible in general to obtain the solution of the initial

equation (1) in the form of a definite' integral. Let us prove that

function WOO), which satisfies the Laplace equation (61) with

p < 1 and takes rated values with P = 1

W(1, O) - P), (78)

can be represented by formula

0) F (9)(1= di2%@ 2-2 P. CO O(-1) +e" (79)

The right side of formula (79) is called the Poisson integral. With

p < 1 partial derivatives of this integral with respect to p and 8

can be found by direct dilfferentiation-under the sign of the integral.

Let us find

20

t. ( 2,)p-co'( -S)+(I+P') co (y' )-4vd "

S 
I

Hence:

P+i V.-l(+ IX ~'I + P it4,().( ,lo~-)

+2?(- + 3')-1 +:)+4?(1 -p')) dv,-0,
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i.e., function W(p,O), defined by relation (79), indeed satisfies

differential equation (61) when p < 1. Let us now find the limit

to which the integral of Poisson approaches when p approaches Its

limit value - unity. Having divided th±s integral into a sum of

four integrals, we will give to formula (79) the form

where ,79)

(80)
1(81

04
I-, F()-P((!- J

0)2cs(-+p (83)

Assuming in (80) and (81) p = I, let us find

J, (1, 0)-., (i, o)- =. ( 84 )

rI since when p = 1 the integrands in definite integrals Y,(p,O) and

J,(?,0) turn into zero everywhere in the region of integration.

Assuming further

tg t

let us find

cc. (t-wo ( +(-PainS

, )' 4_ +( fS

S i+ 2p OM 2-s T

d? 2 - secta d( - a

+ + togaU )Coa+2a

20



and thus,

r- -I' i-,a- -Is ,,(85)o
where

As can be seen from (.85) and (86),

hzh.j wi~,. eimj when Pmi.

04 
z? who

.~~~~M W-huI)O - ? mi.
,.., .,(8

Substituting (88) into (82)., let us find

AO, W-- ).( 89 )

Substituting (84) and (89)" into (79'), let us find

(90)w(M, 01 - F'(O), ji(0, ).(9o

From (83) we find

II d) .< - ( - . - '', (91)

on the basis (87) and (881. Here r is the maximum absolute value of

the difference F(?i-F(O) when 0-#<9<0+s. Since by assumption function
F($) is continuous at point 9-0, then n will be as small as desired

when sufficiently small c. From (90) and (91) there follows the

inequality

I Wt'I, O)-P(b)j< . (92)

But since inequality (92) is accurate at any c as small as desired,
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and m approaches zero together with c, from (92) it follpws that

IV (1, 0) - P ,(3

i.e., function W(P,&), determined by formula (79) when 1 1 indeed

turns into the assigned function F(). Assuming in (79)

(914)

we will obtain function W#,, which satisfies the differential

equation (61) when p < 1 and-boundary c6nit-I!oh ' (62) when o 1.

Substituting (94) into (79), we will find

IV (p, -) d. (95)

Asuming in (86) and (85) = 7r, we will find

Se,- when am,,

S 1-pco~(96)

Thus, formula (95) can be given the form

t ( f(4cos)(1-p')4--P10 IIV(?,0),£ . 'p,-+ - %1 (97)
U

Substituting (97) into (63), we will find

paw /ao ?,9 (98)

Formulas (97) and (98) determine the unknown function WV(,O), which

satisfies the Laplace equation (61) when p < 1 and conditions (62)
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and (63) when p 1 and when p - 0. In order to find the unknown

function p(x), it remains to substitute (97) and (98) into (64).

When p < 15 by fulfillng differentiation under the sign of the

integral, from formula (97) we will find

OW(, ) us1at tl+P o
t ;4~s -p 4-110 -'(99)

Using identity

and fulfilling in (99) partial integration, let us give to formula

(90) the form

-1-I-poos - --U) (100)

(according to the condition function f(x) is continuous and has a

piecewise continuous derivative).

Formally assuring in (100) p - 1 and taking into account the

identity

2SI 2 o 2 Ct 11

we will find

011

or
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Not dwelling now on the question about the existence of the

obtained definite integral (102) and substituting (102) into (64),

we will find

P (aa~g

Substituting P from (98) into (103) and replacing in (103) aeos$ and

f, let us find the unknown solution p(x) of the initial equation (1).

Thus, for the desired function p we obtained two formulas (71)
and (103). Let us discuss briefly their comparisons.

By differentiation with respect to 4, from formula (65) we will
find

I a n tsin A (10 4 )

If function 0(b) is presented by the Fourier series

a.s (105)

then the series

S(0fl hU no -b. cm no)

is called the series conjigate with series (105), and the sum of this

series, if it converges, is designated by f(l):

(0) -, (a. ZiA no- Co no ). {1

Using this designation, from (1O) we will find

n Cos n. (107)
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On the basis of (107), formula (71) can be given the form

2*

1411A61 2 dp tg -2 G? (108)

In the thoery of trigonometric series it is proved that the sum

of conjugate series- 0(0) and 4,,(0) are connected with each other by

the dependence'

4(~a-~4?)t2j!, (109)

Hence
2A

dJab -0 t f dl (acot~ 71 -# 0it (11o)

By substituting (110) into (108), we will obtain the formula

P (at Cos 0)-)-palcots ) I IP+ IJ-

which coincides with formula (103). Thus, if in the general formula

(108) function d/(aecos) is represented in the form of a trigonometric

series (107), conjugate with the Fourier series (104) for function
df(a cosO)

do , we will obtain formula (71), which determines function p in
the form of an infinite series. If, however, we use the integral

formula (110), we will obtain from the general formula (108) formula

(103), which represents function p in the form of a definite integral.

With derivation of formulas (71) and (103) we arrived at the series

of (107) and the definite integral (110), formally assuming p = 1

in the first of formulas (68) and in formula (100). The question

about the convergence of series (107) and the equivalent question

about the existence of the definite integral (110), the integrand

of which turns into infinity with ?-0, has remained open here. In

'See Mikhlln, S. G., Applications of integral equations to certain
problems of mechanics, mathematical physics and technology, State
United Publishing Houses, 1947, p. 91.
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the region of the theory of the trigonometric series, these questions

have been the subject of a large quantity of investigations. Not

dwelling on these extensive investigations, let us note only the

following. We assume function f'(x) to be piecewise-continuous.

In this case series (104) will always be convergent (in particular,

for points of discontinuity of function f'(x) this series will give

an arithmetic mean from limiting values of derivative /ew) with

an approach to the point of discontinuity on the right and on the

left).

However, the convergence of series (104) does not yet entail the

convergence of conjugate series (107). In particular, for points

of discontinuity of function f'(x), this series diverges, and,

accordingly, the definite integral (110) does not have meaning.

The solution p(x) of the initial equation (1) infinitely increases

with an approach to the point of discontinuity of function f'(x).

Later in S 3, we indicate certain sufficient conditions with which

function ft(x) should satisfy so that function p(x) remains limited,

and indicate the procedure of calculation of the definite integral,

which determines the solut.Lon p(x) of the initial equation (1).

In conclusion of this paragraph, let us indicate one more

conversion of formula (103) obtained by us for function p. Assuming

l e t u s f i n d d t ( c o s ) a s i n ? ' (a c o s 9)

Sa = si4 d, d(a co ') - -,

d? 0 2 ' 3 d' * I

Hence

26 I

CdI(a Cos 9) - (.2 Ccos ) f-b f
2~ d da (

U

2 dl/(aCos V) si(1?

since cgj!eg4!

CosT-8a +O +8z
2 hI2+ 2I 2 _____

2 2
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Substituting (112) into (103), we will find

zi-awrT P cc os, (113)

Assuming

S a e-OI a- z, acOS P? , ,we will find a ,, (114)

a( ) s & S) Z (115)

Formula (98) can be given the form

or, assuming acc:V--,

4

2 y's ' (116)

Formulas (115) and (116) determine the solution of the initial

equation (1).

§ 3. Solution of the Fundamental Equation of
the Two-Dimehs!ona! Contact Problem by Meanso f "unbtiOn of a Cbmplex Variable

In this section we give one more derivation of formula (115), which

gives the solution to equation (1). This derivative is based on

elementary concepts about functions of the complex variable.

Subsequently, the method of the solution of equation (1), given in

this chapter, will give to us the possibility of obtaining the

solution of more general equations.
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If in the expression for function F(x) argument x is replaced by

the complex number x + iy, then we will obtain in general the complex
number F(z + iy), the real and imaginary part of which we will
designate by u and v:

S+iv' F(X+ Y). (117)

If one were to change the real and imaginary part of the complex

number x + iy, then in this case the real and imaginary part of the

complex nu'mber u + iv will be changed. In other words, u and v will

be functions of two variables x and y:

U ,U (ZO y), C--~ s y). (118)

Thus, for example, if F(z)=z'. then F(z+iy)-(x+iy)'z'-y'+2izy, and in

this case u-z'-Y', t)2z. Let us investigate properties of functions

u(x, y) and v(x, y) definable by relation (117).

Differentiating (117), we will find

aU+ -F' (z+i), II

+i ° amuiF'(z +iv) ' f" (119)

whence

a(120)

By comparing the real and imaginary parts of the right and left

sides of relation (120), we will find

av 5

av au" (121)

As we already know from § 1, relation (121) indicate that

function v(x, y) will be the harmonic function of variables x, y,

which is conjugate with the harmonic function u(x, y). Thus,

dependence (117) of every function F(x) places in correspondence

28



to the pair of conjugate harmonic functions u(x, y) and 7,(x, y),
which we will find by, separating the real and imagInary parts in

expression F(x + iy). Having designated by a the complex number

x + iy, we will call F(z) the function of the complex variable z.

The real and imaginary parts of F(x) will be designated by ReF(z)

and ImF(z) respectively:

V - eP() v .' -I z.(122)

Thus, the real and imaginary parts ReF(z) and ImF(z) of the

function of the complex variable F(s) are conjugate harmonic functions

of variables x and y.

Let us consider now the function of the complex variable z:

- "(123)

Let us find " (
0- 0

P(X .. do ')-z+)dt (124)

By separating the real and imaginary parts in (124), we will find

Re F ) (8) 1 -z d8(

": .'.(.125)

By comparing (125) and (5), we will find

--F-V--,- • (126)

Thus, function F(s), determined by the relation (123), is

connected with the logarithmic potential of the simple layer V(X, y),

determined by frcmula (2), and relations (126), whence
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" -* (127)

Condition (4) for function V(x, y), according to (126), gives

ReF()-/'(x). when y-O, tl<a. (128)

The second of relations (125) directly gives

jaF()WO when QO, u j>a.: (129)

Finally, from (24) and (126) it follows that

Im F (z)= -w -oi Y I+, < ,

W (z)aw---p ( Wien y -0, x <a; (130)

The expansion of function F(z), determined by relation (123), in

series in powers of I/z, or, so to speak, expansion in the neighbor-

hood of the point at infinity of plane xOy, gives

F(Z)-.- Sp(t) -++-+... dt-!. +!L+!*+..(1)

where 9,, a,... are real numbers, where

,-a
or

am - (132)

according to designation (27). Thus, in the neighborhood of the

point at infinity of plane xOy function F(z) should have the expansion

+ ,. + ,..+ (133)
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Thus, the solution of equation (1) is reduced by us to the

consbruction of the function of the complex variable F(z), which

satisfies conditions (128) and (129) on axis Ox and condition (133)

in the point at infinity. Having constructed function F(z), we will

be able to find solution p(x) of equation (1) according to one of

formulas (130).

Let us consider at first the simplest case in which

l(z)Omconst. %ta I1.<a. (134)

Designation by F0(z) the function of the complex variable z, which

solve in this case the stated problem, let us find for it, according

to (128) and (129), these conditions:

lMP.()-O when Y-o, II>a. (135)

Let us examine function

(136)

where x0 is the real constant. Let us find

Considering

(Fig. 1), let us find

£-=, cr (cos ? + ilia 9)-M.
Hence

"" (137)

Fig. 1.
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For definiteness we will consider that

?ago when U-01 3 > (13), (138)
and further (Fig. 1): w

goP-9 whn Y-O--, < J (139)

At the same time

r-Ix-X., ihsn yv- 0. (140)

From relations (137), (139) and (140) it follows that

Whoen Ypm0, Z>X,
when Yf=+, 4< Xo J (141)

when an 0- - < set

since

Pisuming in (141) x,'ma and x°..-a, we will find

1IT=FI. -1x+a, x>-,Y,,O,

V . I/_-?__, z <-, +,

fMzaa iV-- -a-, Z<-a. y-o,

whence

/-a i /a, -z-----, -a<z<,,, -+0,I l12)

--a,.S-V -4,. •<-a, ,-o.
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Let us now show that function

-- (z-fr (143)

satisfies all the set conditions.

Actually,

S

- +

P pas WLal
(144)

i.e., condition (133) is fulfilled-, Substituting (142) Into (143),

we will find

P

. -<-6, 3I-0Ot (145)

F,(M - - -0. |<,. (146)

Relations (145) and (146) show that condition (135) is fulfilled.

By comparing (130) and (146), we will find

P~ , M(1147)

which coincides with the earlier found solution (74).

Passing to the general case, we will look for function F(z),

which satisfies conditions (128), (129) and (133), in the form

F(s}-.(2) 4(3, (148)
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bringing the determination of function F(s) to the finding to the

finding of function O(z). As one can see from (146), when Iz<a, y- *0
function Fo(z) is pure imaginary. Consequently.

RoP(z)- F4(4,)jmO(z) when IZ< a, yT.*O. (149)

Substituting into (149), (128) and (146), we will find

P

r(=)---- -- 1MO(s ), r-- + 0, I'Nxe,

Pa- I O s. . - O -. < G

whence

. I C1501.
M 4 (2): t Ia- (X).. 131 <,, ya- -0.

As can be seen from (145), when 11>4, v-0 function F0 (z) is real.

Consequently,

ImF(z)=F6(z)1M'b'z) NnI jz>a, ym-O (151>

Substituting (129) and (145) into (151), we will find

ImO(-)mO when lzI>a, y-0. (152)

We will look for 0(z), in the form

'- g(153)

wnere o - real constant. Using formulas (123), (129) and (130), we

will find
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IM 0 ( z)- () Whn Jzj < a, Y . + of
I M (0)-X (Z) when IZI <a, y.-0,I (154)
IM O(-)- O whn 1:¢ > , Y -0.

Comparing (150) and (152) with (154), we will arrive at the conclusion

that function 0(s) determined by the relation (153), will satisfy the

set conditions (150) and (152) if one were to assume

( ) -V'' I'z). (155)

Substituting (155) into (153), we will find

a /,i') V at - sds + C.
ow- - ,_, (156)

Substituting (143) and (156) into (148), we will find

F(s)= ._...~ - _(157)

Thus, function F(z), determined by.relation (157), satisfies

conditions (129) and (130). Expanding this function in series in

powers of l/z, we will find

+ -

.. = T + ; ... ,(158)

where 6,, bi, ...- certain real coefficients. Comparing (133) and

(158), we will arrive at conclusion that condition (133) will be

fulfilled if one were to assume

C-m 1. (159)

Substituting (159) in (157), we will find
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In order to find the unknown p(x), it remains te substitute (160)

into (130). According to (142) function '- when XIz<a, Yv- 0O

is pure imaginary. Consequently,

C

______ r-a (16 1)

whenISIa ±m0.

Taking into account the relation

0+

n.SI (t -.x) ds./I sV'(cAgS(t-zldS'

-0

and relation (142), we will find

IM P (Z) -

(t - x- di + j--m

upo jzj <a, y-. +0,Irm P (S) - (162)

it a.n X_ 0 ) 1 +' -V,,)t

n pa 1I 1< , y,, 0..

Formally passing to the limit in formulas (62), i.e., considering

in definite integrals entering into this formula y = 0 and comparing

(130) and (162), we will find

V [go A - (163)

which completely coincides with formula (il5) obtained in : 2.

Let us dwell at this time more specifically on the last passage

to the limit, which leads us to formula (163).

3f



Let us divide the definite integral

J(z, f)- ( d- (164)

into four compnents:

J(Z0 Y)--jk(s, YW+O(Z, Y)+lslV)(0 ) , (164.)

where

ma(sV- ) (165)

e
8++

(S-X*+V . a (167)
84,

-r,(z, -r(Z) V'X-Z-' S .,-42.+ e
Jz t-)'+'+" (168)

In definite Integrals (165) when y = 0, the integrands remain

limited in the whole region of integration. Thus,

6

jt(z, ol-' L- Vr '- -  1 d ,  ill,(.o} 0) _ .
(169)

Further

LID (a* +) j - In( , +(1 70)

On the basis (169) and (170), from formula 0l64') we will find

-. ,(171)

J. (Z' 0)



It remains to investigate the limiting values ?,(=, +0) and J,(z, -0)

of the definite integral J,(dv). It is said that function v(t) at point

t a z satisfies conditionA of Lipschitz, if in a sufficiently small

interval-(x-a, x+) it is possible to select such two positive

constants M and 4 (O<&< i), so that inequality is fulfilled

". Z-<1t +6; (172)

If the two functions %ft) and 9,(z) satisfy the condition of Lipschitz

at point t = x, i.e.,

• 0<, ;t O< ,t,.--, t =+=,(173)

then the product of them

9 (t) 1 (. -) g (174)

will also satisfy the condition of Lipschitz. Actually,

v (a) - i W -T& (1) To (L)-.= (zs (W )
Ii  b (e)-. (z=)ly.l() + b7(a) -y (x)] s (a),

whence on the basis of (173)

(175)

where m - maximum absolute value of function 9,(t)in the interval
(z- , +, HMAi 1 9,(z)I +A^, - is the smaller of numbers a1 and a2

[(ir (175) we assume that E In any -ase i less than unity).

Thus, let us assume that :.',-l , f'(t satisfies at point t=x

-a<x<a) the condit:1n )f . Then function I'C)V-'-'

will stisfy the tondltlun A' psotAtz at tn13 point, since whern
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--a<<u V&-9 satisfies the condition of Lipschitz with a equal

to unity:

were m - the largest absolute value of the derivative with respect

to t of V4=1 in the interval(Z-, x+a):Thus, the inequality will

take place

(176)

On the basis (176) from (167) we find:

I n( ' if ) < M ( I_ s ), + I ', 0 < 9 4C . ( 1 7 7 )

When Y = 0 the integrand In (177) turns into I-z;.-' and remains

integrable, since O<a<j. Thus, ILJ.J,(X, ± O) i <M IV l : (1-78-)

II

"" -; "(178)

On the basis (178) from (171) we find

x-*9"" ' - (179)

From (179) it is clear that J(x, j) remains limited when y approaches

zero, where

J., O) ( s-" ,-z (180)
ale
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The expression standing in the right side of equality (180) is called

the main value of the integral

r I(t) V7.JT--'-" ~'(181)

and we use for it the standard designation of the definite integral,

stipulating the fact that the written integral should be understood

as its principal value, i.e., the limit of the sum of two parts

of this integral standing in the right side of equality (180).

Thus, on the basis of (180) from (164) we find

i . (182)

If function f'(t) satisfies the condition of Lipschitz at point

I-z (--a<s<a), where the defir'ite integ-al standing in the right

side of relation (182) should be understood as its principal value,

I.e., the limit shown in the right side of formula (180). j
Substituting (182) Into (162), we will find

III, l< a. - (183)
I

" F(s)o- - )

l, j I<a, y--

where, according to; (130),

P<>=,-F ,[ -1 ' rF d ,j
VX.7 zT- - X (184)

Thus, for th- case when at point Is--(--o<x<a function f'(t)

satisfies the condition of Lipschitz, we Justified the derivation

oft formula (163), obtained by us ealier as a result of the formal
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passage to the limit, and proved that function p(x) defined by

formula (163) will be in this case limited, and the definite integral

entering into formula (163) can be understood as its principal value,

and it must be calculated, as the limit of the sum

rn

-.. (185)

Let us examine as an example the case when

i(x).--Ajulr '  (0 kCC (186)

I()-,=x-Azk" wh.en x>O z
wtwn z<O (187)

Differentiating (187), we will find

K-( - (k +if 1)xhen S>,. r4A (k +1)(-x) (t88)(8)
whe S<U. (188)

Substi'tuting (188) into (184), we will find

P(z)*+', tl f- to, " d-t)- ,'A Y T. (189)

where under the integral sign in (189) the plus sign can be taken

when t > 0 and minus sign when t < 0, and this integral should be

understood as its principal value. As can be seen from (188),

when x # 0 function f'(x) has a continuous derivative and satisfies

the condition of Lipschitz with the index a - 1. When x = 0

function f'(x) satisifes the condition of Lipschitz with index

a = k if O< ki, and does not satisfy the condition of Lipschitz if

k = 0. In particular, when k = 0 function f'(x) at point x 0

undergoes discontinuity:

414



/'(- A ,w bz>0, /'(z)%. A ,Po. z<O.

Thus, if O<ke1, then function p(x), determined by formula (189),

will be limited everywhere inside the interval (-4,4. When k - 0 we

can only affirm that function p(x) will be limited when -a<X<O

and O<s<a.

Let us conduct computation to the end for the maximum case k = 0.

In this case formula (189) takes the form

iI
1(190

-6

Let us find

• S(191)a"z.dt - t+s dt.." - ° -,_ . . ' II -

Assuming further

;4T a ( Ica Tb ___ (192)

we will find di-- (I+, VP ,

Vo'- -  a,- ----- - -~~ t+ ,

* - )

/

Wihe nce i

as 40Y ra (

=, 2- dla S = 2'd; "" (193)

3 +
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y finding the principal value of the definite integral

0 < z<at

e will obtain

d-- t

es ., 
(194)

aking into account (193) and (192), we find

GA._ dt•• •
Z

e -is

[[ , (+ +("+0p I-, I) 0_

• i- ,In r T(1 -

(T& C (r

here 
"(

J+ (196)

ccording to (192) and (196) we find
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lira 4 In C.. . . .-

lim In ,

4 .."a* ,T C X

[:,a_ V,,.-(,+,),J

-+

-'a In li ra g ) I/ X X + z( 0 -€} '. - 4 .I ' (z - C ) t

+ +n S (197)

Substituting (197) into (195) and replacing after that by x according

to (192), let us find

a

t -s-2)

gm 29 Ina 0- <*"-

By coductig anaogou cluains fo- thecae-a(198)n

dt:~ n - . -1<z<O.99)

Formulas (198) and (199) can be united into one:

I/ , In - O<IzI<a. (200)
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Further,

-a - cd

-2 ~ 2y~i~.~2&(201)

Substituting (200) and (201) into (191) and (190), we will find

0<:1<a. (202)

As can be seen from (202), the found solution of equation (1)

approaches infinity when x approaches zero. When lxl--.a, the found

function p(x) also approaches infinity, with the exception of che

case when

P - (203)

In this special case

P(X)= -;- 0. 1,. X 0 (204)

and turns into zero when IzI--

Substituting (187) into (116), we will find

-o . -(205)

Further, c

IdV_.2 5Itd. (206)
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Substituting (206) into (205), we will find

,m .(207)

By comparing (203) and (207), we will find that conditi-n (203)

under which the initial equation (1) has solution (204' will be

fulfilled in the case when equality will take place

2(208)

Formulas (202) and (207) solve the examined problem in general when

arbitrary value of constants a, a and A; if, however, -ondition (208)

is fulfilled, formulas (202) and (207) pass, respectively, into

formulas (204) and (203).

§ 4. Case of Several Sections of Integration in the
Basic Eauation of the Contact Problem

Let us now examine the solution of an equation more general than

equation (1):

where f(x) - function assigned in n intervals of argument

x, a,<z<bM(m=-,2,...,n), and p(x) - unknown function, subject to

the determination in these n intervals of the argument. In tho

special case when n Ia,--a, b1 xa, equation (209) turns into

equation (1).

Let us consider the function of a complex variable
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here

,-- cm , ... ,4. (211)

--cording to (127)

- ' '(212)
here

quation (209) is equivalent to condition

,4 ,, (xp 0-() o <. < b,, (n,-1, 2,.. ,
. • (214)

mposed on function Va(zp,), V,(xy,...,V,(z,y), or- to condition

hen YMO,, ant<x<bat (m-i, 2,.., ,

.mposed on function F(,-).

Relation (219) and (130) will correspond to relation

l,', F., (Z) -,0 p ,, Y.0, z< a, u z >b,"
Im P. (Z - up (Z) 3f. 0.i , a < < . It 12 ..., ,

vhence

IMFm(s)- nm t)o -. ,

Im F ( ) and (1) wil <crp t, .elation



since when Y-±O, d*<Z%<k, tImP(z)-O when A*m and 1mFk(z)--rp()

when k-m.

According to (133) the expansion' of function F.s) in the

surrounding point at infinity will have the form

3 'SSrjqo () t
whence

(218)

where t " .
'~~ p. (q

Thus, having constructed function F(z), which satisfies conditions

(215) and (216) on the axis Ox and condition (218) In the neighborhood

of the point at infinity, we will find the unknown function p(x) by

formula (217). For simplicity we will limit ourselves to the

consideration of function F(z) in the upper half-plane y > 0, and

we will determine function p(x) according to (217) by the formula

p~~~1 IMF(Z) when Y. +0; <i(29

(m is 2#(219). (m,2 , 2....on).

Just as in § 3, we will examine first the special case of the problem

in which f(x) = const, and accordingly

/ ()=0 * o n a,.< z< b,. ( mr 12, . ,n). (220)

Let us show that in this case function

F . Y -_ - .) (3 .- ,) . b,) (221)

where P,.,(:)- polynomial of power n - 1 in z with real coefficients
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'pa-S ,e + +.. . ( 222)

satisfies conditions (215) and (216, i.e., let us show

I

4 According to (Iu11

! £Tpm= 1pm Whe x,, > ,, -'(2)

Assuming in (221) V,+O and taking into account (224), we will find

when Z>bS4, v-40,

ez-., ((e.2
when "-&' '- - i 1.0+0

etc., ilxee.,a~
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|II- l
when e. < i: .2. a)

(226)

when <:<o 4 :(ma0,1,,...,lyau+Q, if one were to take -

Formulas (22§) and (226) show that relations (223) indeed take

place.

Let us find, further, according to (221)

. ..

7 +43+...+o.-I) II ++ ... )x

(227)

where %,as, certain real coefficients. Comparing (227) and
(218), we will find that function F(a) will satisfy condition (218)

if one were to assume

ce'n"*' =-sea , ' ) '  (228)

According to (219), (225) and (228) we find

< <' , 2,. (229)

Formula (229) gives the solution to equation (209) for the special

case when f'(Z) O when <i <b. 0 ,2, ... ). When n 1 1, (229) turns
into formula (147) found earlier for this case.

50



Pasairi to the g:eneml oaae,, we will. look ror' function P(), which
satiaftes conditions (215), (236) and (Q18), in the .dOrm

(230)IJ
reducing the determination of function F(z) to the finding of function

As can'be seen from (225), When.-<b,1 A.' .. gt1,4.

function P() i8 pure imaginary, polynomial P,.( when V +Q obtains

real values. Conequently,

when < < b,(= - L 2, ..*O), ya +0

Substitutin (225) and (215) into (231). we will find that condition

(215) for function F(s) will correspornd to condition

i.e., condition

amp% (232)

when V<b+jm-t,2,....n), f.+0 or function 0(t).

As can be seen from (226), when b*<z<a m.v(-O~t,2,...,.} vm+O

function F0 (a) obtains real values. Consequently,

s~ J8~ (233)

whe b < x < on,, (,=-mo 1*, ..,,, .0.

and condition (216) for function F(z) Is reduced to the condition
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tor fPatln 04 We v111 ;oolc for fundtlon 00 in the fomi

1ITI- + P.(235)

According to (216) and (217) we will have

w then < fia (9 a-AO,1 21 + j
I M ( ) ," .(236)

ComparIng (236) with (232) and (234), we will find that function O(z),

defined by relation (235). will satisfy conditions (232) and (234),

if one were to assume

~3) ~(237)

Substitutins (237) into (235), we will find

*(a) U S (I,,, - GA . ov,

Substituting (221) and (238) into (230), we will find

IS .(239)

Ot, t

Thus, function F(z), defined by relation (239), will satisfy

conditions (215) and (216).

We find further
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A

(240)

Thus, under condition (228) function F(zY, defined by relation (239),
will satisfy condition (218) in the neighborlood of the point at
inf.inity.

AFrom (225) we find

q + (241l,

Prom (239), according to (241) we ftnd

easl

eas,

Vp (II a-.) (t - '- +,P...) (214)

,,en a,<x<b. ( -, . ). m, +0.

But, as we already known from § 3, if fuiction f'(t) at point
S-z(Gt<k<&) s8atisfies the condition of Lipschitz, then

- a u _ r

3(243)
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4
where when a a I under the integral standing $n thq right side of

formula (243) should be understood as-its principal value. Substituting

(243) Into (242) and (242) into (219). we will find

-.$) . . - -

P

o ,-

Ok-

where frc8)= +ez+ ... 4 ....JJ- V ,  (2145)

0 Pon xoo.(2'46)

When .,"o, -do Aisne formula (244) coincides with formula (163) found

earlier by us for this special case.

Formula (244) for the unknown function p(x) is found by us from-

relation (219). Function F(z), which appears in (219), satisfies

the boundary condition (215):

Bo ' ( s) if -} , , + e, a, < x < b, (atom to 2, 0.. 4)#

where
R eP (.a) asO X In" s * (247 )

according to (213). Thus, the found function p(x) will satisfy the

relation

a

( 1--,)a'l'(:), (248)

.,<x < b (n-i.2,..., .4
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Howev'r, Z,'oe reain 28 tdo"~ nort follow yet that the found

(248') with respeet to ax, we will find

where constants , i. e. , by substituting the found function

PWx into the left sidle of' eqi~a&tion (209), we will obtain the function

of argument x', which on eech of the intervals A ~n(in o2;~A

can differ from the assignO 1undtion f(z'} by a certain constant

%. However,, functio np(z), determined by formula (2414) , contains
n arbitrary constants CVA cap .~4 and P, which are coefficiezats of

the polynomial PAnals). Ths, additional constant components %, ere - . e

wAch we will obtain as a resul~t o.f the substitution of function

pWs from (2414) into the initial equation (209). will be functions

of constants c't -,e 4..8 ,.P, and in this case linear functions, since

these constants enter linearly into the expression for function

p(x). Equating to zero these additional constant components
6 a.s~*Vwa we will obtain n linear equations for the determination

of constants CaOv and P, which enter into the expression ( 2414)

* found by us for function p(x). Having thus determined constants

co & and P, we will obtain the solution of the initial equation

(209).

In the contact problem of the theory of elasticity we will

encounter later the~ case in which function f(x , which stands in the

right side of equation (209), is assigned only to within the arbitrary

constant component , common for all intervals Cm 2m~a, -.. n

but then quantity directly Is assigned

P- p(t)dtL

In this c ase for resolution of the problem It is sufficient tQ

express constants Cp at -- c-v.'4s which enters into formula (2441) , in

terms of the given quantity P. Below we write out the equations,
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whieh in thl c e determine constants go, to ... , ese. 7rom (247) we find

tin

I according to (209). If function f(xc) is assigned to with in the

constant component, common for all intervals a - (msi, ,....n,)

the differences standing in right sides of relations (250) will be

fully defined.

In accordance with relations (226) from (239) we find

V4 4

- ( -(251)

Substituting (251) into (250) and taking into account designation

(24I5)

P,,(31erC+ ,+ ... -+e~4 'z 4

we will obtain x-1 equation

-="-• (252)
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to=i 2# 1., -

for the determination of coefficients t., p.., "

( in the contact of the theory of elasticity we will also encounter

the case in which the function f(m) standing in the right side of
equation (?09) is assigned in each of intervals (m5b. -1, 2, ..-,n)

only to within its arbitrary additive constant for each interval, but
then n of quontity P . Is assigned:

, . {- ,, .. oal (253)

In this case

(254)

and we will find coefficients *so according to (244) from
equations

2"41S

II (255)C-8*)

which are. obtained by direct substitution of function p(x) from (244)
into the first n-*from relations (253).

In conclusion of this section let us examine examples.

57



when i<*(<1 R- is an arbitrary constant.

In this case formula (244) takes the form

(256)

where the plus sign should prevail when x < 0, and the r.Inus sign

when x > 0. Equations (2.52) form ms 1 give

C*3 (257)

Assuming x at and designating by k the ratio y, we will find

&t 2em .% .. . -00 ( 5,

where

I

0' (259)

is the so-called complete elliptic integral of the first kind, for

the calculation of which there are tables.

Further,

(260)

since in this definite integral the integrand is odd.
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Subotituting (258) and (260) into (257), we will find

i" -- T (261)

Formulas (256) and (261) give a solution to the problem.

2) n- 2, e---b, 6 -, - ,-a, be-b, J(z)-a, when -b<x<-a, /(x).r
when a<s<a, % and %- are arbitrary constants.,

.p (t)dt - Pap()dtMP.

In this case for p(x) formula (256) is retained, but the constant
CO will be determined this time by the first of equations (255), which
gives

4% -WI+ (262)

Considering z=-1ba=(P and designating by k quantity
we will find

b 8* do tV~z, ,=)(,-',} o (, ,D~_ "I~ k (263)

Assuming wi- we will find

I S

-.- S (264)

Suhstituting (263) and (264) into (262), we will obtain

y- :. + -i P (Pa -Pa).

since
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(265)

Substituting (265) and (266) into (256), we finally will find . r
C267)

where the plus sign prevails when x < 0 and the minus sign when x > 0.

§ 5. Equatioiof the Periodic Contact Problem

Let us now examine the solution of equation

Sp(Id < (268)

1 - , 2t.. )

where /(0)- function assigned in n intervals of the argument

0 hn <9< P.(m - 1, 2, .. ., n), and p( 4)- ia unknown Tunction subject to

determination in these n intervals of the argument.' We will subse-

quently assume that

0 < as < p, < a's <, <...< ,, < ,., < 2,x. (269)

Let us examine inside the circle of the unit radius V+,4'-1 of

two variables and n:
.

1Keldysh, M. V. and Sedov, L. I., Effective solution to certain
boundary value problems for harmonic functions.
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where R - distance between point Q with coordinates g, q and point

Q' on the circle of the unit radius with vectorial angle 0 (Fig. 2):

Raw

Fig. 2.

Function v(E, 4) constitutes the logarithwic potential of the

simple layer with density p, which is located on arcs cs)(;4),) (v)..t
of the unit eircle. Jast as In I I, by direct differentiation we
will be easily convinced in the fact that function V(4., r) inside

the circle I'+ieml'satisfies the Laplace equation i-j -=uO it is

a harmonic function of variables E, ,. Passing to polar coordinates
,0, i.e., assuming 9-pccs$,j-tea%: we will find

.tr-5 p|,)(270)

Assuming in (270) p 1 and taking into account identity we will find
2-2 r*e3(T-q. U2 .lm )

V (271)

By comparing (271) and (268), we will arrive at the conclusion that

equation (268) is equivalent to condition

V-1(0) wh, .n a,<4<P. w,...,'t= (272)

imposed on harmonic function V.
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I
pulfilling in (270X differentiation with respect to p, we will

find

P(7)7= - f-)O+ (273)

Using the Identity

we will be able to give to formula (273) the form

- ~ 4.(274)

where

S a w %.~ (275)

But expression c .P(y).-- jj Jy constitutes the Poisson

integral

in which F(9)-p(T) when t< <v , (i ,,...,n) and F(r)-O when

P.<9~< .dm--, 1,2, .... , ,. ) and approaches P(O) when

Is << 1(r-,,,...,) and to 0 when A, < <, ,, (am0.,,...,), when p

approaches unity. Thua, from (274) it follows that

==P -. ,=,<< .( -t 2,...rO (276)

jV P
wh ?=IS P.<0<%. (-0, i2#6...2e (277)
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Thus, having constructed function V, which is harmonic inside the

circle p - 1 and satisfies on this circle the boundary conditions

(272) and (277), we will find from (276) the unknown function p( ).

The solution of equation (268) is equIvailent, thus,* to the

construction of the function harmonic inside the circle according to

mixed boundary conditions assigned on this circle., Just in preceding

chapters, we will reduce this boundary value problem to the problem

of construction of &efun~tion of the coi~p2ex variable according to

boundary conditions assigned for it. Let us consider the function

of the complex variable t-t+iv'

Here under the integral sign "+iaucsipir is the complex
number -depicted in Fig. 2 by point Q# 61 xzcw?+ isinrp- is the complex

number depicted on the same figure by point Q1. Let us find

~Cos 04 It n
ef- Cos ?+5Il ?-?CosO-128in6

(P Cosa+ P An) Orcos V'-PCos 0-601.1 V-Fdk 0))
j0W?-PC4O5V+1(s11. I -PS. uL01 tvuo0-($top -PUAM

Cos +(279)

By differentiating with respect to 0 from (270) we find

'&- a 'CSj (281)

According'to (281) and (273), formula (280) can be given the form

0 +07 (282)
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Thus, the real and imaginary parts of the function of the complex 0(4)

introduced by us are connected with the harmonic function V by rela-
tions

ROG) " inD (r)}sPw, (283)

and conditions (272), (277) and (276) which are satisfied by function

V on the unit circle p = 1, correspond to Conditions

Ho, ,). 'o %her. , ,, < 0 < ail ,. .. ) (284)
Im¢() 2w-- - he wnpil<O<.,,mnw0;,2,...,), (285)

]m 0) typ(O) - han 1,a,, < 0 <...,n.), (286)

which will be satisfied on the unit circle by the function of the

complex variable O(C). Thus, having constructed function O(g), which

satisfies conditions (284) and (285), from (286) we will find the

unknown function p(O).

By means of consecutive transformations we find
g4 Ife 'I . =f-!

il -ii
I( ; -')+) (+) -( ).'

.I i

-- + c," i- ,(287)

+i

Substituting (287) into (278), we will obtain

-,- S'..,4~(288)
where

2 "(r )Ctg .19 (289)
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and P is determined by relation (275). Assuming further in (288)

* I .-- = (290)
we obtain 2290).

where "

SM=W-=,OS # bn-dS 2(a I=t 2s..., (292)

According to (269) C*1).=p(-2=aCq . (293)

as< b, < as < . < b <W. (294)

By introducing designation

+---9' (295)
we give to formula (291) the form

where (296)

F (3)mi. YJ S ± (297)

Formula (295) determines the complex number z. the real and imaginary

part of which are changed when a change in the real and imaginary

parts of the complex number 4. Designating by x and y the real and

imaginary parts of the complex number z and assuming in (295)

•Cutew8+4sO. we will find

,-,aa+ (si_ ,, - pc-@ ,+-I.--,- 2p .+(-

whence

-2a(298)

From (298) it is clear that y > 0 when I < 1 and y = 0 when p 1,
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I.e., point P with coordinates x ,whieh depicts The complex number

a x + iym is in the upper'half-plane xOy, when poirit Q with polar

coordinates p, o, which depict4 the ccmplex number C-pt,, is inside

the unit circle p.= I (Fig. 3)., and point P emerges on axis Ox when

point Q gets into the circle p = 1. When p 1 formula (298) gives:

I--Ca 2(299)

Relation (299) shows that when point describes the circle p = 1,

point P passes axis Ox, where x changes from - to + when O changes

from 0 to 2 v.

"Fig. 3.

From (296) we find

Jm F(z) =1ra,+. -• }(300)

From (300) it follows that conditions (284) and (285) for function

t(*) correspond to the condition

lloP'()I,..,I°(.-T ,,n e <0 <p.(m,-.w, 2e..., n),
ilmP())]..+,-O when p<O]<c .a (m-O, 1,2, ...,n)

for function F(z), which according to (299) and (292) can be given

the form
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(30J)

From (300) and (286) It follows that

(33

if one were to use designation (293).

Relationa (302) and (303) directly ensue also from formulas (216)
and (217), if one were to compare (297) with (210 ant. (211).

As showed in § 4, function F(s), determined by formula (239),
satisfies conditions (215) and (216). Thus, functicn

ADO (304)

will satisfy conditions

when y m= + 0, ee, x< &n(,- i = .. , }
when ()- 0 . .. } A!, 0. , ,<Z<G,.., (,,r=0, t. 2, . .. , as).

We will look for function F(s) in the form of the sum

( .) + FS (a).- (306)

Then according to (301), (302) and (305) function F2(x) should

satisfy the conditions
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Fuirthemore, as can be seen from (297) and (304), (

Consequently, function F(s) should also satisfy the condition

a. 0-. (308)

Let us examine function

a,-

According to (224)

when +0<Z<a m=0i....,n), (309)

when +O. aR<X<b, (ms-t,2...,) )

and

Vf (310)

According to relations (309) and (310) function

--[V -i (311)

satisfies both conditions (307) and condition (308).

Substituting (304) and (311) into (306), we will find

P

"II (--.(312)
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I

where P.04) is a polynomial in a of the power n:

(3)...

)Using identity

"' ~ + te + eL+a~S+ --

where ?e,('a€t)...,?t fun)- fimctions of argument t, the evident
expression of which we do not write out, it is possible to give (312)

formula the form

a.

64e - 0
X IS- 2) . . P

or

+()

since

,,, a,,,<s<b (M-,, .. ..
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II

Here P ) is a polynomial in z of n power, the coefficients of which,

with the exception of the latter are different from coefficients of

the polynomial P.(s).

Using, further, the identity

I I+ts . I

let us give to formula (314) the final form

~i. rn,.

t%

N- d-s- +T

+ (315)

where

S+ .. +€ (316)

is a polynomial with certain new coefficients es, ,,..-, e. Substituting

(315) into (303), let us find in accordance with (309) and (224):

(- 2&m ct ) -X -Y:-

U4'&6-,- n ,,,-

+ (-I) .,P(z . (317)

Substituting into (317) a and b from (292) and assuming in

(317)
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we will obtain

It , , 1 &P~ ___,|

since g i

gin it" 
"?

ASt

os inal

Since

2 . *a

or finally

in

(318

2 2

or finally
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Let us now turn to the determination of coefficients 7,, Tit..-.: which

enter into formula (318) for the unknown function P(O). From (278) it

is clear that 0(0) = 0. Further from (295) it follows that z a i

when C a O. On the basis of this, formula (296) gives

F(s)+pui4, "(320)

Substituting (292) into (315), assuming in (315) £tw--lgj; xii: and

taking into account the identity

P •~-- r. i .. "I

( e"

" € -. . .em1 . . . .

we will find

obtain quatio

11 U

awlS rnIV &i n LI

t tln I

rn-I Tn-"
*. .. ____ .....______21

(asi~ + ')+ in!J
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I

whence

BI

:... " :'" .m(322)

Further from (283) and (272) it follows that

[~(~~ 4 (),. -( * =11ah,1-P), (323)

If function tRO) is assigned to within the arbitrary constant component

common for all intervials (ia. ) (a. ,),..., (zP. s) the right sides of

equations (323) will have fully defined values. From (296) we find

j~e F('(3241)

Substituting (315) into (324), let us find in accordance with (309)

and (224)

xt-' ds +-= €€ , s+

+ ) Wa) (325)

'WhenA, < z< ah., (k. 1. 2,.., n-1)

Substituting (292) into (325), assuming in (325) ta" ,z.--.tS.
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and taking into account (319), we will find

oI

leai

+ (326)

Substituting (326) into (323), we will obtain the equation

--r 2 2

. I / " I ,
"U I L -' "a -- $%lU• " Y Mee .t t

(k-t, 1 . , -

which Jointly with equations (322) will form the system of n + 1
equation for the determination of n + I coefficient T..,s'T,,

If function 1(3) is assigned only to within the arbitrary
component, its own for each of the intervals (z 3 ,v), (a',,),..., (=w, A. but

then all n quantities are assigned

Pjrni p(O)dO ( 2, ... ,4 ),(328)
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and not Just their sum P, then, ,substituting (318) into (328), we

will obtain equations

U..

sin

2n~ jf--~ (329)

(k-, 1, 2,..,- .

which together with equations (322) will form for this case the system

of n + 1 equation for the determination of n + 1 coefficient T,. Tv -... TO.

After coefficients Top l,,...° Tar. are calculated, formula (318) gives
the solution of the initial equation (268).

In the special case when n = 1, , -+9. formulas

(318) and (322) take the form

-' cos -- ,,2-*

U ICosf C -a, . . . " - ' "I (330)

Cs t 
(331)

C03 2

since when a-<O<=+, 'a<= we have
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and consequently,

oo, o. °,. 2<o.(332)

Substituting (331) into (330), we will obtain the formula

P ( ) -

2

2 2, o 1

xI'(? (-ostj°c-"-j 2 °- .

or, if one were to consider the identity

Cos- 1 ctg- di a us-Cos

we will obtain

P(O)- - A, +. a.2'r.- os-,- cos

c_. 2-"(333)
2

Assuming in (333) Tr + 0 instead of 0 and =+O instead of 0, and

taking into account the identity

sin si (Co -0 -CQ- cogi2

it is possible to give to formula (333) a somewhat different form

NO Y'cot -coo76
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In the maximum case when a v , formula (333) gives

Using the identity

it is possible to give to formula (335) the form

4P
2 +--;- •"(336)

0

In particular, if

+ lf(2:)-QY~o'-,

or, according to (109),

(0)>, -[r + (.].€337)

where PR) is a function conjugate with function f'(0).

In conclusion of this section let us examine examples.

1 )- n J, , -- ., a, 1<1) con'L. w-- £ < <,+a.

In this case formula (334) directly gives

q. _______(338)

)Aal, (,-7 +7, ip,- -"o"
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In this case

.

( -(339)

Substituting (339) into (334), we will find

P(W+)'

X( !1 vtpcw(340)

1::!
2i

Assuming

tg .L,=tg !uirt,

we will find

S 2IP Co osS i

, ~c. .+co,., .i
2 2y

and

p (i+o)------ - ---x"• •,

XI 8g Si I p
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The Integrand in (341) can be presented in the form

+N

where c,, c,. ,., and c5 do not depend on t and must satisfy equations

. 8 0

; €, -- ¢,tg+---Ctg ¥ --w0,

Substituting (342) into (341), we will find

I .'

Substituting,(342) into (341) 4e (3ll4fi)
if 2

where

,8 + tet'
-- % =tI2&~
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Let us find

A 0o, (345)

since in these definite integrals of the integrands are odd.

Assuming further

we will find ....

co ! se't d?dt 2

i ~. tat +ee' 2 te ,

4 . t a

22

coad

s [1 C .3?" )&" '-c2)d4
i.

2 0  (+i.,wi . 2.; (346)

Assuming

we will find

2tz j- ) (I-

Ct (I + * S t i

-|

a -i<<i.
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By calculating the principal value of the definite integral, we will

obtain

-( - , -•

Il -' E + n * -Z i

/ •

Further,

Substituting (348) and (349) into (347), we will find

J. Mo. (350)

Substituting (350), (346), and (345) into (344), we will find

(A als t+P coo~

2', " l + + o" (351

Excluding from equations (361), cl, C3 and c5 , we will obtain equations

-= "C itPO I IIV t
-c.Secl T+C,=OcCt+2ctg',t

whence
C.M -ts '4O1 1 SC.!i* (352)

CA !-$c.. ' a. Co"

Substituting (352) into (351), we will obtain the unknown solution

+ 2% t.o [A(+] os O "(353)
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As we see, when 0 approaches -a or to +a, r approaches infinity.

Only in the special case when

2 -(354)

do ';e obtain according to (353) the solution

2n ./csk-ot (355)

limited in the whole interval -

§ 6. Equation of the Contact Problem in the Presence

oFTriction Between Compressible Bodies

Let us now examine the equation

~p(ldtv p()i,-j- dt- I (z). IsI<a, (356)

where v - certain constant.

Just as earlier, let us introduce into the consideration the

logarithm,; potential of the simple layer.

v(,r= (357)

As we already know, function V(x, y) satisfies relations

(y-j,+,-2p(z) , Izl<a, jiUS+ . (358)

Equation (356), according to (357) can be given the form

p (t + W(z, 0) , l<.

or, if one were to differentiate this relation with respect to x,
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(359)

Taking into account (358), we can give to condition (359) the form

Let us examine in the upper half-plane y > 0 the function of the
Pomplex variable z:

P') " p(t)d ay .av
a - _ - d • (361)

According to (358) and (360) function F(a) will satisfy boundary

conditions

UvRoF(z)+ ImP(z) -- I'(z) when IZI < a, Y: +0 (362)
ImF(Z)=0 when Izl> , -+ .Y36)

In the neighborhood of the point at infinity function F(z) will

have the expansion

P + p() i- - (t)d (363)

By knowing function F(z), we will find the solution of the initial

equation (356) p(x) by formula

p (z)-- I[Im F(z)],.+0, lzl<4, (364)

as follows from (353) and (361).

Thus, the solution of equation (356) is reduced to the construction
of the function of the complex variable F(z) in the upper half-plane

y > 0 according to boundary conditions (36 ) [sicj and cond~t.on

(363).

We will look for function F(z) in the form



" )) - T 0 (365)

thus, reducing the detecting of function F(z) to the detecting of

function ¢(z). Let us deduce the condition which should be satisfied

by function (a). The difference z - a can be presented in the form

:-amp.', (366)

where

C z -- a)' + y, %-arctg7:7  (367)

(Figure 4). In this case we consider that 0 changes within limits

of 0 to v when point z is in the upper half-plane. From (366) we

find

cob

-- i in (1 -V(368)

As can be seen from relation (367),

P-IZ-4whnyP-+O, 0-0 w±1enx>aP YaN47O,
0w when z<a, y--O. (369)

Y Fig. 4.

Assuming in (368) y +0, let us find on the basis of (369)

-!+ !+ 1+ (370)(2-a) (siny-i OOy)

8.4 a<a, yu+0. J



Changing in (370) the sign at a and y, we will find

(z~) it+ l "  .. >-a, yu.+0.

I I- I -( (371)
(=~~~ ~~ +f'. +a-(- -- + '0.T

From (370) and (371) we find

(S+0 0 (z + o)'' ( - ) - '

when 2>4, y- +O'

t I .\

-(a+=)' (a- )''( =- c ) (372)
we-a<z < , +0,

)"- -S<-, m +0j

Assuming in (365) y = +0, we will find according to (372)

Ho F (s) + i Im F(t).a
.(z a)' v(_ , "{no O,) i L?1()l.

noFP(;)+ it 'P (z) . - ' 
(373)

=,{az) " " (az)'T~sLzT-ico )M 373)

ReP (s)+ i 14 P (s)

wh* .<-, yam +0.

The first and thir. of relations (373) directly give:

ImO(S). (+.v--) " Ira F(z)

Jm4~(z)~(*a)I T Z asJmF4+0 j
S ((374)

than 3<-a, yUN+O.

Multiplying both sides of tije second of relations (373) by



44"7+i x, we will find

0 4-a<i<a, '- +0. (375)

The constant y up till now has remained indefinite for us. Let us

now put

S(376)

Using relation (376), it is possible to give ti conditior (375)

the form

whor --4 << a, + 0 (377)

Substituting (362) into (374) and (377), we will obtain for function

O(a) the boundary conditions

* i.xl< e, =,- o. r(378)

ImI(,) O when lXI >a, Y-.+O. J

Let us clarify further the behavior of function O(z) in the

neighborhood of the point at infinity. From (365) we find

~I-I(z)"( + a) 2 (z- a);-& F (z-) - T : ";-' i() 3 9

But, according to (363), we should have

jza(:)J-, -P. (380)

From (379) and (380) it follows that

O(CO). _P. (381)

We will look for function C() in the form
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-8

where c - real constant.

As we already know,

114 ¢) - V)f= (Z) h fin 2 < 4, y + 0,

It(*)=, >a, y+O. (383)

(see, for example, formulas (361) and (358)).

By comparing (383) and (378), we will find that boundary

conditions (378) will be satisfied if one were to assume that

1 2

q (z): = -(a + Z)72+(0- X)2-1 '(X). (3821)

Further, as can be seen from (381) and (382), condition (381) will be

carried out if one were to assume that

C= -P. (385)

Substituting (384) and (385) into (382), we will find

(). ) )- r(5dt_ (386)

The second of relations (373) gives

un F (-(a + x)- - (a-- )2 ' (sin n Im (z)-c, qRo0V(z)
whenIZI<a, y- +0. (387)

From (364) and (387) we find

(s)- Ih- [o ) whe <a. (388)
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Substituting (384) into (383), we will find

0-423 /(z) whn I X<a. (389)

From (386) it follows directly that

COS (a+8) 2 (e r/'tdlP hnz a.
-- .. "(390)

Substituting (389) and (390) into (388), we will find the unknown

solution of equation (356):

P (z)t

cos'~~~~~~ Co U_____________

--o <(a++) "., < (391)

where

ar ts <~)t 1 2 (392)

according to (363) and (376).

§ 7. Equation of the Problem About the Compression
of Elastic Bodies Bounded by Cylindrical Surfaces

Let us now examine the equation' to which the problem about

the compression of two elastic bodies bounded by circular cylindrical

surfaces leads:

a

(z) g(Z) + i!H!--- ) -a < z< a, (393)
-a

'For a numberical solution of equation (393) the method of finite
differences is very convenient - see Appendix II.
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where A(x) and f(c) are assinged functions (we will assume below that

.(z)6 when -a<z<,.(--v)t()), and e(z)- Is the function subject

to determination. Giving rise to equation (411) is also the theory

of the airfoil of finite span, developed by Prandtl, in consequence

of which this equation Is called the Prandtl equation. We give below

the- solution of this equation for the case when function X(x) has

the form

") () 4, + .. 394).'V

where both polynomials entering into (394) do not have real roots

in the interval -- a <4a.

In general for the assigned function X(x) it is possible to

construct a quite similar approximate expression of the form (394),

having taken the number n sufficiently large.

We adhere below to the method of the solution of equation (393)

proposed I. Vekual. By means of this method the solution of equation

(41) is reduced to the integration of the differential second-order

equation.

In § 2 we showed that equation

at, -- a <P (395)

has the solution r

(see formula (115)), or, if one were to use identiy

'See I. N. Vekua, on the integro-differential Prandtl equation.
Applied mathematics and mechanics, Vol. 9, No. 2, 1945.
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:757T

if )  .i ti

Thi souto wil be liie inpontx - adxa.e

* 5)V -... 'JVO'.. ;.

P . 8 *

Since ' *. .,

if f(x) is the even unction.

This solution will be limited in points x -a and x a then

hnd only when

8

In this case the solution of equation (395) takes the form

-.,. , -<z~a.(396)

The same solution, limited in points x = -a and x a, will be
! had by the equation which we will obtain by differ'entiating with

respect to x both sides of equation (395). When t > x we find

when t < x:

Thus, IS "I dX -8 1 -4

Differentiating with respect to x both sides of equation (395),

we will obtain the equation

0(397)
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which has the solution (396).

Let us present now equation (393) in the form

(38
- Qmd I(- 4 (z)c(4) -a<s<c (398)

we will temporarily examine the right side of this equation as the

known function. Then, according to formula (396) for the solution

of equation (397), we will be able to find from (398) derivative

g'(x), which stands under the integral sign:

'd(.-- fa- '1 -4 (399)

Substituting (394), into (399), we will find

a

. .. . .. -3-a<Q,

where
' I (t dt-X( 4 0 1 )

Relation (400) can be presented in form

e (s €,- j? (s)' 4,+', $I +. + or.,"

S - i)RO) d" (402)

where

a 4 z )-I a,_- 4- + S, ' . + ' _ 4+ 01-Z .. + :. , ( 4 o03 )
Or r, , + ( .. _ (t r... (4-4

where P), P,(r)...,P.(t)--polynomials in t, the coefficients of which

are easily calculated. Actually, by comparing (403) and (404), we

will find
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-- (o +aJ+ 0. )(tDbo +bX+ .. "

+ az + . + + .+ (405)

By comparing components containing identical powers of x in the left

and right sides of relation (405), we will obtain the equations

JPo(t).b. (a,+ a&+ ... +&'I.)- I
-a, ( . + b&I +.. +

fp, (1)- P, b, (a, + 4t +... + as') -
4, (b, + by +.. + b,)

*(1406)
,., (L)-P,., () =b., (+ aS +.. . + a.:t)-(b. + ' + bli

- l,, . b (a,. + +.. + + )-
, -a, (b,+bat+...+bAC"), J

which determine polynomials P,(), PF(,...,P.(t). ?rom the first n - 1

equations (406) we will successively find

Ps , ( 4& + a,'t +.. + a:)

- 0 (b, + b~t + .. + ')

P, () "(b, + 6,t) (a, + at + ... + a.10-3) -
- (a. + aXt (b. + b, + ... + btn-S),

P. ( " . + b,1 + bat*.) (a, + ,t +... + an- - (407)

- (a, +a., + a.t') (b, + b+ .. .

.................. ...

. (a +a,1+... + at'l-') b,u I

and the last of equations (406) is a co'ollary of the others.

Substituting (404) into (402), we will find

u++ + .+4.+.,.+.,g (408)"'V,'-,- b.1.T..+b. - -a +,,z+...+,z1.,

where

+ +. . , +, (409)
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Relation (409) connect the unknown as yet constants a, au..,n,.

with the unknown function g(x).

Let us represent (408) in the form

l-+='nz"?,,1,+...) "

or, according to (394),

! - X= "J tS "'.( , (410)

where R(c) -rational function:

(411)

Integrating by parts, we will find

...'....~~~d(n~4)
' dg' ) (-

(1412)

Differentiating both sides of the obtained relationship with respect

to x, we will have

a; 1-2 (-) 4-8 0+8 (413)

Substituting (398) into (413), we will obtain

(.X) o I(a)(4114)

Differentiating with respect to x both sides of relation (410) and
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i

taking into account (414), we will find

I ,d ILL -FA'w(z)- ) C(a) C(-a)

J- L f :'()-a I())():z+rz---a (415)

Thus, the solution of the initial equation (393) is reduced by us

to integration of the differential equation (415). This differential

equation is integrated in quadratures. Actually, assuming

~I .(t) dr,
(416)

we will have 49 e, (z) de Itz dg

Sd '4112d d~s t"I ) L z 4 di§ 49

Thus, dividing both sides of equation (415) by X(x), we will obtain

the equation

d? rS- ) d-LZ + +x
or

where 4 (417)

()"- d L(' + (418)

Following the method of variation of arbitrary constants, we will

look for the solution of equation (417) in the form

(P ) Cos F + (,P)$in is, (419)

having subordinated unknown functions fl(p) and f2 (p) to condition

(,)coI,+ ()ap , 0. (420)

Differentiating (419) and taking into account (420), we will find
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, " -A 0 i Sn e + cu it) , e""
dog "(421)

Substituting (419) and (421) into (417), we will find

A,40 (i a IL + A' W) Cos• (s). (422)

From (420) and (422) we will find

41 (Z---¢'i) Sin . /,0)= '(Z) Cos (11J2 3)
Hence

i "+

. .* + ct .
. .. (424)

where variaoles t and p* according to (416) are connected by relation

I

W ( W i(425)

and c and c2 are arbitrary constants.

Putting (424) in (419), we will find:

gumDt(t)(COS ps in -gin A ~COAj) d:A+0jCosw+CaigI&$
or ',

g I( )aiub(& -0)dte +cac°lp.+cahinaP. (426)

Passing in (426) from variable p* to variable t, we will find in

accordance with relations (416) and (425)

Substituting (436) into (445), we will obtain

95



. . .

+C, Co (.:) +,. (428)

Integrating by parts and taking into account (416), we will find

N ~ ~ ~ ~ ~ t + ), (-- . (t))) xi~Lx-Ft=-I [-., '" ..R ¢o ] ,cos 1 ¢.)-, t)w ' t) ii-''

- , [o . "(0)] niL(Z)').-(429

x cosj.L(z)-p(t)It- L. E s(nj. (X). (-429)

Substituting (447) into (446) and including constant

into the arbitrary constant c2, we will obtain the following final

expression for the unknown function g(x):

X .

' "  ['F () +'. (t)R (1)] cos (p (z) - .(t)]di +

+";L' " '-: Jsin[FIl x) -F ( t )) dt +

+Ccos p(X)+Ciinp(x), (430)

where functions F(x), R(x) and p(x) are determined by formulas (401)

(411) and (416).

Assuming in (430) x = a and x = -a, we will obtain the equations

for the determination of constants c1 and c2 appearing in formula

(430):

'af
"eco;ip(a)+csin. (a)- (a)- ;, [.2F(g)+ (Q)R()x

* 1

.XCosis,(a)-p*) U .(x (431)

x sin (a) - (t)] dt,

CCsI(-a) + e.in (-a)m -a)+ - X
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--'5aQt .i (431 cont'd).... L ' I- MI 0+8- j siO - 4)- (O)|

Substituting (430) into (409), we will obtain the system of n linear

equations for the determination of constants 2, *,,...a- which

appear in the expression for R(x).

Boundary values of the unknown function g(a) and g(-a) appearing

in formula (430) are determined by supplementary conditions, which

result from the formulation of a certain problem leading to equation

(393).

The same procedure by which we obtained the solution of equation

(393) can be used to obtain the solution of equation

(Z) 91(Z) + ,_4.l~) - < X < a. (432)

if in this equation X(x) has the form (394).

Having presented equation (432) in the form

9 (-((), -a<z<a (433)

and temporarily examining the right side of this equation as the

known function, we will find

i ), -a < z < a, (434)

in accordance with formula (396) for the solution of equation (397).

Substituting (394) into (434), we will find
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•. ., a- e + F Z, (435)

where

Relation (435) can be presented in the form

a+ + +eM + g' It) (1, T) +t,
S.- (437)

where R(t, x) is the function determined by formula (403) or its

equivalent formula (404). Substituting (404) into (437), we will

find

(6) -r Z+- . +Ia,+a,z+ ...+a= g', d 4a Ci, P.+P+ ...+ .,-

be+ . (438)

where ..
('1) P1. (t) dt

g + + (439)
k-O, 1,..., a-1,

and P,(). PI(),..., P,.,(i) are polynomials determined by formulas (407).

Differentiating both sides of equation (433) with respect to x,

we will find according to formula (413)

(" ~ C _'-rz_ L[) e(.)
9-xg{)|t --t + (440)

Substituting (440) into (438), we will find
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d (al (±)

..+) +.. + p.e

or, according to (394),
, (X) - FS) ..-

R ( g,, 4(441)

where " (

S(z) .(442)

Thus, the solution of equation (432) is reduced by us to the

integration of the differential equation (441). Assuming

((443)

we will have

dd 'd,?dx dxg

-- ).(z~f)z),1.we will

Thus, multiplying both sides of equation (441) by we will

obtain equation

Xior + 1 7 (444)

where (z)- A(z) [r (X)+S (zr+ L r) +X F).(445)

As we already showed above, the differential equation (417) has

the solution (427). Consequently, the solution of the differential

equation (444) wi1l have the form

g m (I).si (v  ') d v°+  e 4 +  4 in  V. (446)
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where variables t and v according to (443) are connected by the

relation

O TWO" •(447)

Passing in (446) from variable v* to variable t, we will find in

accordance with relations (443) and (447)

g ()- (t) 4inLV( )T-vO V +Cao zv(z)+C. irv(.t). (448)

Substituting (463) into (466), we will obtain finally

X 8in [v ) v (t)) d + c, cos ()'+ e sin V (t), (449)

where functions F(x), S(x) and v(x) are determined by formulas (446),

(442) and (443).

Assuming in (449) x = a and x = -a we will obtain two equations

for the determination of constants c1 and 2

C, cos V (a) + c, sin i(a)

+ ~ +(a S 1

x sin [,,(o)- v (t)] di,

C, Cos v(-a) + c, sin v(-a)-
-a - F(t) ( ) + S () + F" + x

×$i,, D(-,a)-v(tOld."

Equations (439) by means of partial integration can be given the form

P& (t)ldn P& (c)ds, , b,,,+... + b,0 + b,: <o .+,, + bow..
--g(-p) k (-0 -}" k , 1,..., n-i.

100



Substituting (449) into (450), we will obtain n equations for the
determination of constants ks A,,..., 0,, which appear in the
expression for the rational function S(W).

Boundary values of the unknown function g(a) and g(-a), which

appear in formula (449), are determined by supplemenatry conditions

resulting from the statement of a certain problem, which leads to

equation (432).
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CHAPTER II

TWO-DIMENSIONAL CONTACT PROBLEM

§ 1. Derivation of Fundamental Equation of the
Two-Dimensional Contact Problem

Let us assume that two touching elastic bodies (I and II on

Fig. 5) before comprezsion are bounded in the section on plane xOy

by curves

y am (z) and 'y-- (). (1)

Prior to the compression between the elastic bodies there will be

the clearance Contact of the bodies will take place for

those points of the axis Ox, where

/I(x)+ 1 (z)mo.

The set of points of the axis Ox for which contact of the bodies

takes place before compression will be designated by S0 ' With

compression by forces parallel to the axis Oy, between these elastic

bodies generally contact even along certain additional sections of

the axis 0: will appear. The set of points of axis Ox for which

there is contact between the compressed bodies will be designated

by S. In the process of compression the elastic bodies will obtain

forward displacement in the direction of axis Oy, which will be

designated by -a and o2 " Thus, between the compressible bodies an

approach a equal to a1 + a2 will occur. Let us assume that two
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Fig. 5.

points of elastic bodies, which occupied before compression position

A1 and A , touched as a result of compression at point A (see Pig. 6

where the dashed line shows the outlines of compressible bodies prior

to compression and solid line, after compression). Displacements of

these points AIA and AIA will consist of forward displacements A{A

and A'A equal respectively to -a and G2 and elastic. displacements21
A A' and AIA2. Let us designate by ulI v, and -u 2, -v2 elastic

displacements of points A1 and A2 in the direction of axes Ox and 0y.

If point A has the abscissa x, then abscissas of points A1 and A2

will be respectively equal to x - u and x + u2, and ordinates equal

to fl(x - u1 ) and -f2 (x + u2 ) according to (1). By examining the

displacement AIA of point A,, we will find for the ordinate of point

A the expression

by examining the displacement A2A of ppint A2 , we will obtain for

the ordinate of point A the value

Thus, the equality

Is,0-us) + V-, = --h (X+ u)-V1 + as,

or

va +r, =a-a(z-u,)-Ax+), " (2)

should take place where a = a1 + a2 is the approach of elastic bodies

with compression. By examining only small elastic displacements, we

103



Fig. 6.

can replace in (2) f1(x - uI ) and f2 (x + u2) by fl(x) and f2

Let us obtain then for points of contact the condition

on S. (3)

We will further assume that the friction between the compressible

bodies is absent. Then at the points of contact each of the compressed

bodies will undergo on the side of the other body only normal

pressure, which we will designate by p(x). Assuming that the whole 3
region o-f contact is small in comparison with dimensions of the

compressible bodies, we will consider that elastic displacements vI

and v2 at the point with the abscissa x will be the same as those at

boundary points of two elastic half-planes (upper and lower), which

are under the impact of the same normal pressure p(x) as that of the

examined compressible bodies.

Let us examine the lower elastic half-plane to boundary of

which is applied noL'mal pressure p(x) on sections of the axis Ox,

which correspond to sections of contact of the compressible bodies

(Fig. 7a). Let us separate on any of these sections the segment of

the axis Ox from point x = t (Fig. 7b) up to an infinitely close

point x = t + dt. On this section force p(t)dt will act. Since

section dt, on which th.s force acts, is infinitesimal, the action

of this force on the elastic half-plane will be the same as if to

the elastic half-plane an infinitesimal concentrated force p(t)dt

were applied at point x = t. The problem about the action of

a normal concentrated force on the boundary of the elastic half-plane

is well-known in the theory of elasticity'. If at point x = t to

'See Timoshenko, S. P. Theory of elasticity, ONTI 1937, p. 101.
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the boundary of the elastic half-plane a normal concentrated force P

is applied, then the end point of the elastic medium wIth abscissa x

obtains displacement v in the direction of axis Oy equal to

0,- - P +7 coast., (4 )

where

(5)

is the distance between points of the axis Ox with abscissas t and x;

(6)

where E is the elastic modulus, p - Poisson's ratio.

Thus, force p(t)dt, applied to the boundary of the elastic

half-plane at point t = x, will cause at the point of the boundary

with abscissa x displacement in the direction of the Oy axis:

d"- -op(t)ur ,,t+* ot.,

and the action of the whole loau p, applied (Fig. 7a) to the boundary

of the elastic half-plane, will create at the point with the abscissa

x the displacement
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ai
-a (I In (,1 -- dt+ cowt.' (7)

If the same normal pressure p will act on the boLndary of the upper

elastic half-plane, then the end point with the abscissa x will

obtain displacement v in the direction of the Ox axis equal to

V=8 P(np-.dt+cost.(8
- 8

Thus under the made assumptions displacements vI and v2 in Fig. 6

will respectively equal

us o, p (i) . .- d + cont. (9)
6

according to the formula (8) for the upper half-plane and

-r,3(3 ~O QIn L - S4ft +coJst. (10)
S

according to the formula (7) for the lower half-plane. In formulas

(9) and (10)

where E 1 and V, - elastic constants of the first body, and E2 and 2 -

ela3tic constants of the second body.

Substituting v1 and v2 from (9) and (10) into (3), we will

obtain for pressure p(x) the integral equation

(as + 80 P W In Ft on S, (12)
S

'The problem of the action of the concentrated force on the
elastic medium should be examined as an abstraction not reflecting
practically possible conditions of the problem of the theory of
of elasticity. However, in using this formal solution of equations of
the theory of elasticity, it is easy to turn to the solution of the
real problem about the action of the continuously distributed load
on the elastic medium.
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or

P() In. --- dt '(c)n S, (13)

where

l ) .- I i)- 12,(a ( 14 )

c is a certain constant. Equation (13) is the basic integral equation

of a two-dimensional contact problem of the theory of elasticity and

it is examined in detail in Chapter I.

5 2. The Case of One Section of Compression of
Elastic Bodies

Let us examine first the case when the initial contact of

compressible bodies in plane xOy occurs at one point. Let us take

this point as the origin of the coordinates (Fig. 8). We will first

assume that functions fl(x) and f2(x), which determine the configura-

tion of the compressible bodies, have continuous first and second

derivatives in the neighborhood of point x = 0. Directing axis Ox

along a common tangent to the curves limiting elastic bodies in

plane zOy, we will nave

/; (o, o) o. (15)

The sum of the second derivatives

(0) + 1s (0)

w11L at first be assumed to be different from zero. In view of

3 irllness of the elastic displacements, the region of contact S

ifer compression of the elastic bodies will be small, and in this

t.--A1 n the sum of functions 1()+I,(x) will be approximately possible
Srv';nt In the form

. () +h (s) , (0) + (0)] (16)
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Fig. 8.

With respect to forces compressing body, we will consider that their
S resultants, perpendicular Ox axis, r directed to the point of

initial contact of compressible bodies, i.e., to the origin of the

coordinates. Since we assume the initial opening between compressible

bodies fl(x) + f2 (x) according to (16) to be symmetric with respect

to the Oy axis, pressure p on surfaces of compressed bodies will also

be symmetric with respect to the Oy axis. The region of contact

between compressed bodies S will constitute a certain segment of the

Ox -a<z<o axis. The integral equation (13) will have the form

Sp(tlln-Li dt--J(z- when -a<z<a, (17)

where according to (14) and (16)

2 (0) + 1; (0)) 0

or

I @) = ,-4x,( 18 )

where

,.I,(o) + /to (0) (1

and a - certain constant.

The integral equation (17) coincides with equation (1), examined

by us in detail in §§ 1, 2 and 3 of Chapter I. For the case when the-

right side of this equation f(x) has the form (18), the solution
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P + As* - 2' A  
(20)

was found by us (formula (77) of Chapter I), where

4

Relation (21) shows that constant P, which enters into formula (20),

determines the resultant of the compressing forces applied to each

of the compressed bodies and balanced by the pressure acting on

surface of pressure. We will consider force P assigned. It remains

to determine half-width of the section of contact a, which enters

into formula (20). It is determined by the condition that pressure

p(x) should be limited everywhere, including the edge of the section

of contact. This is possible only when

P - Aa', (22)

and formula (20) takes the f6rm

p VA) - !P- (23)

Substituting (19) into (22), we will find

: + ,/)_ (24)1 ; (0) + /a %0) -

Formulas (23) and (24) completely solve the problem by determining

according to the compressing force P the half-width of the section

of contact a and pressure in the region of contact p(x).

Let us examine now that special case when the sum of the second

derivatives is determined by the relation

i; (0) + , ()- o. (25)

For generality we will assume that not only the second derivative

of the sum fl(x) + f2 (x) but also all subsequent derivatives up to
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the (2n - l)-th, inclusively, turn into zero when x = 0, and

derivative

is different from zero when x = 0, being continuous in this point.

In this case, considering the smallness of the section of contact,

when -a z " we can approximately substitute

a W1 + /a (Z) - ZUJr, (0) + ") (0)1 X2. (26)

Substituting (26) into (14), we will find that in this case

(z) - a - Az",: (27)

where

N') (0) + ")(()

and a - certain constant.

In order to solve the integral equation (17) for the case when

the right side of this equation has the form of (27), let us use

the general formula for the solution of equation (17):

" [p S Z)] d] (29)

(see formula (115) of Chapter I).

In order that function p(x), determined by formula (29), remains

limited when x = a, condition

S-12 1)' de.(30)

should be fulfilled. Substituting (30) into (29) and using identity

I_ € m I 5--a .
_-g- s(a'.. '-) a-t5'
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we will obtain

p 1  /()d- .t (t) . (31)

So that function p(x), determined by formula (31), remains limited

when x = -a, condition

0.' (32)

should be fulfilled. If condition (32) is fulfilled, then, using

identity

'.a-

formula (30) can be given the form

_(t d,-t , (33)

and formula (31) will in this case have the form

p~)- i /n -- Z '  r (t)dt (34)
- (z-.

For the case when function f(x) has the form (27), condition (32)

is fulfilled, since in this case in the definite integral (32) the

integrand will be odd. Substituting (27) into (34), we will find

., 2,, a= /~jt '.-x' t'"ap( :) 'n A . - e 82*- _ dt.( _ ) .(

Using identity

f-or +ula-' beg.i+vtZen+ Z""

formula (35) can be given the form _

__



2A

- +, (36)

where
G d

I-=M4M (37)

Integrating by parts, we will find

m-i 'd

a a

whence, using designation (37), we will find

1
m, Y-m ,. .(38)

When m is even, from formula (38) it follows that

m-t~ ~ 'n (-M .),- 3) , =(M- m)r,- 3)... .

as ...(m 3(,n- ) t 1.3 ... (m- 3)(,m - 1), ( 39 ) i-

When m is odd, JM  O, since in this case the integrand in (37) is

odd.

In Chapter I we showed that equation

S p(t)-1n-_dt, , (4o)
-G

where a - constant, has the solution

.P (X ) ,= ~ . = ( 4 1 j)
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(see formula (74) of Chapter I). Substituting (41) into (40), we
will find

4e oa when .-@<a<a. (42)

Hence, differentiating with respect to x, we will find

dt ,-O when -8<8< . (43)

Substituting (39) and (43) into (36), we will obtain

" : .+ -. ] (44)

Substituting (27) into (33), we will find

Wu

or, using designation (37),

Hence, according to (39)

3)(: q xe a~p.(415)

Substituting A from (45) in (44), we will find

t 7 ''- "U + _2A(..)= 0"

" -, )-.. ." (46)

Substituting (28) into (45), we will find
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or

a-3.o *.2x-22n 47)

Formulas (46) and (47) dstermine the half-width of the section of

contact a and pressure in the region of contact p(x). When n * 1

formulas (46) and (47) turn into formulas (23) azi (24). Figure

9 shows' graphs of function p(x) for different n, wnich correspond
to the identical half-width of the section of cont&Lt a and identical

compressing force P2 .
24

$ Fig. 9.

Thus far we assumed that the second derivative of the sum of
functions I,(z)+I,(z) is continuous in the neighborhood .f point x = 0.
Let us consider now the special case when point x - 0 is the point
of discontinuity for the second derivative of the sum of functions

I,(z)+I,(s). In this case the indicated second derivative can, either
by remaining limited, have a Jump at point x = 0, or turn into

infinity at this point.

'See also my article in Reports of the Academy of Sciences of
the USSR, Vol. 25, No. 5, 1936.

2In calculations 9 2.1.06 kgicm2 and a - 0.3 are accepted.
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Let us start from the first of these two cases. Thus, let us

assume that

f(0)+i'(0)- A rhen zz- +C, (48)
I(o)+/,(O)v-2LA vhen z=.- -0.

Then, considering the smallness of the section of contact,

it is possible approximately to substitute

i,(Z)-,(XA.? when >O, (49)
/,(s)+ ,(z)-- A.z when <0o )

We will first consider, in accordance with initial assumptions of

§ 1 of this chapter, that compressible bodies can have only forward

displacements parallel to the 0y axis. In this case we can use for

the determination of pressure p(x) equation (13), the right side

of which f(x) is determined by relation (14). The region of contact

of compressed bodies S will not now be symmetric relative to the

origin of the coordinates. Let us designate the abscissas of the

beginning and end of the section of contact by -a + 6 and a + 6.

Then equation (13) will have the form

0+5

Assuming in (50)

cs=,+t, s-j+R, (51)

we will obtain equation

(52)
T%-41r

which according to the formul& (34) will have the solution

p ( = _ , - T_ -( r r (-+ , , .... (5 3 )
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where conditions (32) and (33) should be fulfilled, which in this

case will have the form

S (

Substituting (49) into (14), we will find

2A,
, when s>O, (,TA-_ (55)

Fl-- -8 x when z<O. ..

Substituting (55) into (53), we will obtain

P + ' : ° [A- ) S J = ' "l 'T € -

I -I

+(56)

Assuming

26U 24V ag,-V, us , 9- (57)

(OIV<i and fv<i when jlI<e and ilI<G).

we will find

S.. .A' (I + P s du

a+V -V(-us

so;--U - -V2 i - - (58)

'When < -6, v < -UO, by calculating the principal value of the

definite integral, we will find

U-.

-- mdu du~ -1 +_

U- -U V ~ asre

+A ,(U.) 4 .1 +) in (59)
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When > -6, v > -u,, we find directly

aU. -U. ,(ula (60)

Formulas (59) and (60) can be united into one:

(61)

We find further

z- .G " =1 L-- (62)

Substituting (61) and (62) into (58), we will find

], ' .*IV) <t.. (1 ). (63)

Considering further

o-,(-)..-, -)(o<?*<,, O<4.<,v), (64)

we will find according to (57)

-aOOS'?, a-U --O ?., (65)

and formula (63) will take in this case the form

v- 1 (66)

According to (43)

- - t (67)

v aAin
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Assuming 1-0coy and taking into account (65), we will find

-9

. - (68)

Substituting (65), (66), (67) and (68) into (56), we will find

% 2a

S+ (cos - cos T,) (A, -A.) - (69)

According to (51) and (65)

x M a(cog-co ,). (70)

Formulas (69) and (70) determine function p(x) in the interval
-a+a <z<a+a.

Substituting (55) into (54), we will obtain the equation

A +a)d:+A 4 C(+ Or

(71)
A- 0 J ) . -+ 2 P (0, + s).

Assuming in (71) %mGocos?, -- acos?, we will find

A-_ (cos-cot?.) ?+A. S (oTcos .d?to,
9g *

i' A.- (cos-cog?.)cosd?+A5. (co?-co?.)0, ,] c .-
#911
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or, fulfilling integration

(72)

The first of equations (72) gives

tno-T.-M (73)

Multiplying the first of equations (72) by - and adding it to

the second, we will find

whence

Having determined 00 from equation (73), from formula (74) we will

find the half-width of the section of contact a, by the second of

formulas (65) - the displacement of the section of contact with

respect to the origin of coordinates 6"; and further, by formulas (69)
and (70), we will be able to determine pressure p(z) in the region

of contact -a + 6 < z < a +6.

Figure 10 shows the graph of pressure p(x) for the case .-- 120*.
Let us note that pressure p(z)"in the 6xamine4 qse is reduced not
only to force P, applied at the origin of the coordinates, but also
to a certain moment N with respect to the point z ' 0. Let us

calculate this moment N. We find

Mm

-AZ + SP(44)04 (75)
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1ig. 10.

since

Differentiating (52) with respect to C, multiplying by and

integrating then with reOpect to 4 fitom -a to a, we will find

to. H. % ai

S P(T44)[ i+~ 4) A (76)

Let us find further

dc (0 - -

n ,, (77)

if one were to consider (43). Substituting (77) Into (76), we will

obtain

~ps~)Irm o + 8) 1,a- 3 LC78)

Substituting (78) into (75) and changing the designation of the

argument according to which integration is conducted, we will find

M2 0+ d. (79)
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Substituting (55) into (79), we will obtain

gA.

or, if one were to substitute iam , ge -aj-

a

will find

since eco?.---.

Thus, in order that the compressed bodies are in equilibrium,

it is necessary that the resultants of compressing fordes be
displaced with )espect to the point of initial contact of fMe bodies
and cross the Or axs at pont zmr If according to conditions set

by us above, resultants of compressing forces are directed to the

origin of the coordinates, but at the same time compressible bodies

can accomplish only forward displacements, then the connection

preventing the turn of the bodies with compression will take the
moment H determined by relation (81).
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Let us assume now that resultants of the compressing forces,

Just as earlier, are directed to the origin of the coordinates, but

the connection hindering turns of the compressible bodies is absent.
Let us bolve the ccntact problem under these conditions.

The relation (3), which connects elastic displacements of end

points of compressible bodies vI and v2, is derived by us in the

assumption that with compression the elastic bodies accomplish only

forward displacements -aI and a2 in the direction of the Oy axis, and
between them besides the approach = aI- + a2 occurs. Let us assume

now that with compression the elastic body, located in the upper
half-plane, besides accomplishing forward displacement accomplishes

still a turn relative to the origin of the coordinates by angle -8,

and the elastic body turns relative to the origin of coordinates

at angle 02 (we will consider the turns counterclockwise). Then

between end points of compressible bodies having the abscissa x an

additional approach equal to ex will occur, where 6 a 6 + 02' In
order to obtain in this case the connection between elastic displace-

emtns vI and v2 it is necessary to replace the constant approach a

in formula (3) by a variable approach a + 0x. Let us obtain the

relation

,,+P.'=+Z-, (*)..- , o(r) oS, S. (82)

Substituting into (3) V. and v from (9) and (10), we will arrive,

moreover, at equation (13), but for function f(x) instead of (14) we

will obtain expression

J(Z)z ±.=. (83)

Substituting (83) into (53), we will find

t Alt-2 (84)
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But the first Integral in formula (84) is equ! i t zero. Thus, the

expression for pressuem p wiil remain the U-W -that In the
absence of the relatike turn of compressibl&-brUew-G, and as before

for pressure p we wail have formula 169). Substuting (83) into
(54), we will obtaln equations

°° (851

Substituting (49) into{8j assumin -vsov, -,..",V and fulfilling '

integma.tion,, we will obtaitm-this Wm. e, instead of equation (72),
eqi;4tion

- (86)

Substituting (83) into (79). we will find

-. ,, 4,,

Substituting (49 ) into (87) and producing the same copuaions as
in the derivation of formula (80), we will obtain

(88)

But since compressible bodies can freely revolve about the origin of

the coordinates, moment M, which will form pressure p(x) with respect

to point.x = 0, should be equal to zero. According to (88) we

obtain the equation
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by~ additng the first of~ equat Wd7T-6\ ith 4qti. (89). *.be will
find

Co a (90)I
Dividing (90) by cos #0 and subt-Oting from the second of equations
(86), we will obtain equation

4VI~

or

From (90) We find

U92)

MfliplVing the second of equa~iona (86) by 0os .4oadadn tt

+ . , 4 ? . , + +,

++

ExldngA . 4ooqutosm2) n (93), we il find "+ ++  +"+

a010 (94)

ofuctact -an the dilcemfenat om this se co relaiv ton th oi

Equation (91) dete1vidnes the angle *0+ after which formulas (92),
(94I) and relation 4._Owa? determine the half-width of the section
of contact a, the displacement of this section relative to the origin

of coordinates 6 and the relative turn of compressible bodies 0
and formulas (69) and (70) determine the pressure p(x) in the region
of contact -a+&<x+<a+a,
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Thus, for the case when the second derivative of the sum of

functions hj(x) s#+)+ has a jump at point x 0 0, the contact problem is

completely solved by us both when the condition of only one forward

isplacc 0nt of the bodies and according to the condition of forward

displacement and their relative turn.

Let us turn now to the case when the second derivative of the

sum of functions f1(x)+(x) turns into infinity at point x = 0. We

will assume that in the region of contact the indicated sum of func-

tions can be represented in the form

t;=)t@) IP (1<k<2 (95)

Substituting (95) into (14), we will have

when z>Q.. (96)

(s) when z<O.

Substituting (96) into formula (34) for pressure p(x), we will find

_____ --j?:g,)+V~i's-s(97)

Replacing t by -t, we will obtain

S_ , .S7 + (98)

Substituting (98) into (97), we will find

M A V'iZ( (99)

Condition (32) in this case is fulfilled, since function f'(x),

determined by relationship (96), is odd. Substituting (96) into

(33), we will find
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or

Assuming in (99) and (100) t = aT, we will find

_____(101)

, ,-;-;" (102)

Substituting A from (102) into ClOl), we will obtain formula

P "'s) (103)
U.kA

From (102) we will find

A I S

Formula (104) determines the half-width of the section of contact a,

and formula (303) - pressure p(x). Definite integrals entering into

formulas (103) and (104), when 1 < k < 2, are not expressed in

terms of elementary functions. When k = 3/2 these definite integrals

(ziliptic), after reduction to canonical form, can be calculated from

tables' available for elliptic integrals. Figure 11 shows the graph

'See Appendix 1, p. 6.
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Fig. 1 .

of. press--,-,,, cllated 1'm- fnrm.--.a fa 3 for the cae /,,

Pressure pf.: Is limmiltd Jn 're .cc re-ic,) o, ccntact -x ;Z

however, derivative p'(f, unaergoe.s jic,;Th fluiy at point x 0r

and the curve depicting fmqtion ptx) hac wnen x £ a corner point.

In conclusion of th-. p. ararap,, let us note the maximum case of

the examined Prblem wnen k 1, ae, ordng to the !'ormula (96)

In Chapter I we showed that ror t4e case when the right side
of" Integral equation (17) P(z) hav the form

(106)

thls equation has the solution

which becomes zero wihen j ,if

'P (108)

(formulas (203) and (204) of Chapter I).

AReplacing in (107) and (108) A by -r we will obtain the

solution to the pxo~lem for the case when function f(c) has the fori,

(105). We find
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whorl

SutitU/ ng A frwt ( ) Into (109), we will obtain fonMt:LA

F ,110-ll) We r nd

-4 (112)

Poy a (112) deteradnes the half-wi th of the seolgon ot contact 4,

anOi-jTA la (i11) -pressure pCz>, Figure 12a shows the graph of

ft~dti n p(z) deterntdra by formula (111). At point x 
= 0 the

pressaq-- p(z) teeomes lmflnit7. Its can bIe seen from (_95), for ttie

examixned'dase (k 1) the o?,i' tetween ao4ipesible bodieF pxior

to Compression is detelmined by formula

, ,. () ., l Al . (113)

and tVie configuration of compressible bodies In the nelhborhood of

the point of their initial contact has the fortM shown in Fig. 12b.

Thus, ,the examined maximum case k = 1 corr sponds to the compression

of tWo, Vedges or the pressure of a wedge, on the rectilinear boundary

of the elastic medium. In this maximum case at point x = 0 it is

not the p.cond derivative of the sum of functions I,(z)+/,(z), that

andergoes discontinuity but the first derivative:

j;()+f,(z)u-- when S'W- (1
I, )+i(z) A when s..O (+0.)
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Fig. 12.

3. The Problem of Pressure of a Rigid Stamp on an
Elastic Half-Plane

In the preceding section we examined in detail the case of the
contact problem in which the initial contact of compressible bodies

in plane xOy is carried out at one point. Let us now consider the

case when the initial contact of compressible bodies in plane xOy is

carried out not at the point but along a certain segment of the Ox

axis. If the length of this segment is designated by 2a and the

origin of the coordinates is located in the middle of this segment,

then the set of points S., in which the initial contact between the

compressible bodies is carried out, will constitute the segment of

the Ox axis -a<z<a.

Let us examine first the case when one of the compressible

bodies has the form of a stamp with right angles in the section by

plane xOy. Usually in this problem this body can be considered as

rigid, and the problem is formulated as a problem about pressure

of the rigid stamp on an elastic half-plane. In this case and after

compression the contact between the compressible bodies will be

carried out along the segment of the Ox axis -a < x < a, and

according to general formulas (13) and (14) the pressure p(x) under

the stamp will be determined by the integral equation

-- i - 8 < 2<, (1 1 5 )
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where a - certain constant, since when -a < x < a the initial opening

between the compressible bodies 1)+I(z)=O In Chapter I we showed

that equation (115) has the solution

0(X), UPF6 (116)

where p (s -dz- the compressing force (see formula (74) of

Chapter I). Figure 13 shows a graph of pressure p(x) under a stamp

plotted in accordance with formula (116). Pressure p() increases

without limit with the approach to boundaries of the section of

contact x = -a and x - +a. At the end of the preceding chapter we

already encountered the case of conversion into infinity of pressure
p(x) when we examined the pressure of the welge on an elastic half-

plane. In reality the real profile of the elastic body will never

have corner points, so that the wedge or stamp, which have right angles

in the section, are abstractions, which lead with solution of the

contact problem to an unreal distribution of pressure in the region

of contact. Below we examine the problem about the pressure of a

stamp on an elastic half-plane, considering that the profile of the

stamp has a continuously revolving tangent. Thus, if

is the equation of the curve limiting the stamp (Fig. 14) in the

section by plane xOy, we will, as earlier, consider that

I(z)-O when -a<z4Oo (117)

and in the neighborhood of points x = -a and x = a when jzj>a we

will approximately represent function fl(x) by the first term of

its expansion in Taylor series:

l,(x~g~(a+ ) (z-a)' when 1(8
I,(z)_- 1(-a-)(a+z) when z-a,
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V. Fig. 13.
I V

Fig. 14.
(119
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A' *. Fi.

considering that with thie approach to point x - a on the right and to
point -a on the left the second derivative f (x) approaches

finite values different from zero. These values will be considered

equal, assuming the stamp to be symmetric, and we will designate by A

! I;(a+o)m1f,(-a-- ) -. ( 119) )

For simplicity considering that the elastic body on which the stamp

presses has a rectilinear limit, coinciding with the Ox axis, let us

take

f,(z) -0. (120)

Substituting (117), (118) and (120) into (14) and taking into account

notation (119), we will find

( (a+z)%+conU when zC-a,

I(1)Xconot* . when -a<a, (121)
A -- l-l' con, when z>a,
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whence

-when -es

(z)-O0 when .-.< (122)
J'(4- - A"-f ) when >.." j

Designating by 2b the width of the region of contact after compression

(b > a), we will find the .pressure p(x) according to the general

formula (34), replacing in it the half-width of the section of

contact a by b:

-b

Substituting (122) into (123), we will find

or

4~d +'~ -s-
b Z) L

+- •(124)

Let us find

---F_ C125)

where

'.. (126)

Assuming

t-b z (127)
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we will find

iv (128)

where C, and C2 are connected with xI and 2 by relation

;,bj4~y~ :, " z "(129)

Let us find further:

when <

~a (130)

I ~when I'

e .- .' I r-- z o

S ~ h__C131)

when f>1<

I - + -' '

Formulas (130), (131) and (132) can be united into one:

goM Irk4 (133)IsI

Analogously,

t UPS~s (134)
-In
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Substituting (133) and (134) into (128)) we will find

v 88a T(i-7-' ( r)0 (135)

Taking into account (126). we will find from (129):

when ,-&, -- Iam|tg-- , (136)

when xrs-c,, ;s6 IftS~ #

Assuming further

(137)

and substituting (136) and (137) into (135), we will find

ts" : )= -.-T 2I-. 1

b ~ I

12 (138)

From (127) and (137) it follows that

z~ bsn yQ(139)

Substituting into (124), (125), (138) and (139), and assuming

according to (126),

*=b $in 4. (140)

we will find

A-,..s_ +, y.uin:

+ 1sin4I
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or

+SIMJ4 ~hl to(1141)

Substituting (122) into condition (33)1 we will obtain equation

C142

Assuming in (142) t b sin * and a b sin 0. according to (140),
we will find

(61h;% sin T)sin d? (sin avo *i r
a *Y. li

or, fulfilling integration

i 2 _9 PL . ( 0 + I ) ( 1 4 3 )

Substituting b from (140) into (139), (141) and (143), we will find

--- ctgm P 0 * + )(144)

Thy., (145)

P- + .)cos? + sin, T i

+4iUvanjs" gzfJ] (1146)

Substituting A from (144) into (146), we will find

'In accordance with designation b, accepted in the examined
problem for the half-width of the section of contact, it is necessary
here in (33) to replace a by b.
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" 41A'I
alas toI' ts tg
* ~8oI?.o~tsV~t4,94L (1147)

Formula (144) determines the angle *0' after which formulas (145)

and (147) determine the pressure p(x) in the region - ?-, which
corresponds to the region of contact -< b b Figure 15

shows graphs of pressure p(-) correspending to different values of

angle 0, i.e., different ratios k1- IM Graphs of pressure

p(x) shown in Fig. 15 correspond to the identical half-width of

the base of the stamp a (see Fig. 14), identical compressing force

P and identical elastic constants, but different values of A, i.e.,

different curvature of edges of the stamp, owing to which angle 0

(see formula (144)) and half-vidth of the section of contact bw

changes.

* Pressure pzaph

7-

44

die

Fig. 15.1
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Thus, considering the curvature of edges of the stamp to be

limited and assuming thus the redl conditions as a basis of the

problem about the pressure of the stanp, we arrive at the real
picture of distribution of pressure under the stamp. As can be seen

from Fig. 15, an increase in curvature of edges of the stamp, other
things being equal, involves an increase in maximum pressure under

the stamp; however, this pressure remains limited, and as yet

the curvature of the stamp is limited.

Formulas (144), (145) and (147) given by us make it possible
to set the maximum pressure under the stamp, if the configuration

of the stamp (width of its base 2a and curvature of its edges, i.e.,

A), elastic constants and compressing force P are assigned. The
graph shown in Fig. 16 makes it possible immediately to detect from

jthese data the width of the area element of contact b, not solviag

equations (144), after which by formulas (145) and (147) it is

possible to calculate'the pressure p(z) at any point of contact.

Fig. 16.

/p. -

c•

§ 4. Case of Several Sections of Compression

Thus far we assumed that after compression the contact of the

compressed elastic bodies is carried out along one segment of the Ox

axis, i.e., the set of points S in which there occurs contact of

compressed bodies constitut6s one continuous line. Let us consider

now the case when the contact of the compressed elastic bodies is

carried out along several segments of the Ox axis: (a,, bI ),
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(a2 s b2 ), ... , (a, b ) (Fig. 17). In this case the basic integral
equation of the contact problem (13) will have the form

where as before

. ()r - =(149)

The integral equation (148) completely coincides with equation (209)

of Chapter I. As we showed in Chapter I, the solution of this

equation has the form

p(:)-m

-,-i ,,n.P W

.. (.<50)
43 <~ xbi

where P(z)- polynomial of the power n - 1:

PR,., (3) . +CA+Ca,' + .. + ,. ° ,, .

P - compressing force, i.e.,

P-y p(s4ds (152)
M.I Gin

(see formulas (244), (245) and (246) of Chapter I).

Fig. 17.

4
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Coefficients a0 ,l' 02' " n-2 of polynomial P..fa) are

determined from the- system of linear equations:

"7V -V- '+'-l

VI! <--,VI,+

xj I(- i /II 0-- ) Y-W dg , (153)

(see formula (252) of Chapter I).

Boundaries of sections of contact, i.e., abscissas a1, b,; a2,

2 ... , an bn, will be determined in general from the condition
that the pressure p(w) should remain limited in the whole region of I
contact, including the boundaries of sections of contact x = al,
x = b, ... , x an , x = bn . As can bb seen from formula (150),

this is possible only when the numerator in this formula becomes

zero when t = a,, x =b (t - 1,, 2, .. , n). Hence we get 2n

equations

x rOW,-I,. (ej =, O
. •. (154)

which determine abscissas a,, ba, a,, bu ... ,o. ba.
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The formulas obtained by us completely solve the examined

problem by determining the region of contact of compressed elastic

bodies and pressure p(x) in the region of contact. In the special

case when some of the boundaries of the sections of contact are

predetermined beforehand by the configuration of the compressible

bodies, as in the case of the pressure of the stamp with right angles

on the elastic half-plane, examined in the preceding paragraph, the

appropriate equations of (154) must be dropped.

Let us examine the simplest example in which the stamp, having

the configuration shown in Fig. 18, presses on the elastic half-plane.

We will assume clearance 6 to be so small that with compression the

contact of the stamp with the elastic half-plane is carried out along

two sections of the Ox axis: -b<<-a and a<z<b. In this case

n-P2, a3*=Q-b, biua-a, a.' -a, bs-b,

s(.x )O when -b<z<-a, 11,(x)-- when a<z<b, (155)

h,(s)o w- 0,(156)

and according to (149)

I(:)wm when -b<z<--a_ .j(z)--i+s when a<z<b, (157)

where

*= -*(158)

(if one were to consider the stamp to be absolutely rigid, then 0,=O),

a- certain indefinite constant.

Fig. 18.
1C
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Solution of the integral equation (148) according to conditions

(155) and (157) was obtained by us in Chapter I and according to the

formulas (256) and (261) of Chapter I has the form

c,- Pt

a<I I<6,(159)

where the plus sign prevails when x < 0 and minus sign when x > 0,

btx

or, according to (158)x

+ C,- (160)

where K(k) - complete elliptic integral of the first kind:

JC (k)-~ i

the modulus of which k is equal to

km. (161)

Figure 19 shows the graph of pressure p(x) for the case

k- -,4, ,o6566(a,+O.)P.

Fig. 19.

' I j
24.

4 "-o "
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On boundaries of sections of contact the pressure p(x) turns

into infinity, which is the corollary of the condition accepted by

us about the presence of right angles on the profile of the stamp.

General formulas given in this chapter make it possible to solve the

contact problem in the case when we consider the curvature of the

edges of the stamp limited.

In this case we will obtain the real picture of the distribution

of pressure under the stamp, at which the pressure will be limited

everywhere in the region of contact. In view of cumbersomeness of

computations we will not discuss this in detail.

Let us now examine the case of the contact problem when the

elastic body, located in the lower half-plane, is pressed by several

separate bodies lying in the upper half-plane, and forces PI, 1P2, "'.

Pn , pressing these bodies are assigned.

If in this case by function fl(x) we understand the function

determining in various intervals of the argument x the configuration

of each of the bodies lying in the upper half-plane, then the contact

problem will be solved by the same integral equation (148), the only

difference being that constant c, which enters into formula (149),

can have different values on each of the sections of contact, since

each of the compressible bodies can accomplish according to compression

its own forward displacement.

As we showed in Chapter I, pressure p(x), which is the solution

to equation (148), will in this case be determined by the same

formula (150) with the only difference being that coefficients of

the polynomial P,(z)-e. c1, ... , c-s will this time be determined

no longer by equations (153) but by equations (255) of Chapter I:

eml mm!

C"j (a. em ( 4)
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-v, ft t•

where

P -P& +PS + a. (163)

Let us examine the simplest example in which the elastic half-
plane is pressed by two stamps pressed by forces P1 and P2 (Fig. 20).
In this case n * 2, a1 = -b, b I  -aa 2 r= a.b 2 =b,

f(z) - 0 when -<z<--

and a<*<& (164)

!I
Fig. 20.

As we showed in Chapter T:, the integral equation (148) according to

conditions (164) has the solution

p{ P_)(P ,..s) .(165)

(see formula (267) of Chapter I), where the plus sign prevails

when x < 0, and minus sign when x > 0. and K(k) is the complete
elliptic integral of the first kind with modulus k,

143



-. b

PaW, p()dz and P- p()dz- compressing forces.

Formulas (159) and (165) differ only by the constant component in

the numerator of the fraction determining the pressure p(x). When

P > P2 the distribution of pressure under the stamps will have the

same character as that on Fig. 15.

§ 5. Periodic Contact Problem

Let us examine now the case of the contact problem when

functions fl(x) and f2(), which determine the configuration of
compressible bodies, are periodic with period I (Fig. 21a) so that

the number of sections of the contact is infinitely great. Let us

denote by (as, bs) (a,, b,), ... , (a,, bA),

O< az < b, <as < 2 < ...- < a < b*<1, (166)

sections of contact of compressed bodies in the interval Ocz~l,

i.e., within limits of one period (we will consider that the origin

of the coordinates lies at the point where the contact between the

compressed bodies is absent\ Pressure p(x) in the region of

contact will be a periodic function with period 1. Let us consider

the action of the periodic normal pressure p(x) on the lower elastic

half-plane (Fig. 21b).

~ b~b

Fig. 21.
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Let us assume that x f t is some point of the interval Oz<l,

in which on the boundary of the elastic medium pressure p(t)

acts. Then acting on the interval (,0+dA)will be the elementary

force p(t)dt, which in the end point of the elastic medium with

abscissa x will cause displacement do in the direction of the Oy

axis equal to
tI

• d--OP+tcon di+o4.,

according to the formula (4).

Since function p(x) is periodic, at points x t + nZ (n = ... -2,

-1, I, 2, ...) pressure p(t) will also act on the boundary of the

elastic medium. Acting on interval (t+n, t+nl+d)will be the

elementary force p(t)dt, which in the end point of the elastic medium

with abscissa x will cause the elementary displacement:

I I["a-P+ function (t)

Having summed up the elementary displacements, which appear due to

the pressure acting on intervals

(t+t, t+l+dt), (t+21, S+21+dt),

we will obtain the elementary displacement:

daop° a (... + I -2 I+ - .

-Sj ]) [ s.- ][ -I'+ function Ct) (167)

As is known, function sin u can be represented by the infinite

product
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where c Is a certain co~nstant, or
*1 '1I 1-

S and 4. < X < ip( ,| 2.. ) wher-e

1.

I pQ)-Iu(175)

Assuming in (174)

,1j..,. .&,, (176)

we will obtain equation

21

and where

a m a, bm '-m (m -ip 2,..., ). (178)

In Chapter I we showed that equation (268) has the solution

(318), where constants are determined by equations (319), (322) and

(327) and

,- P "(,)d,.

Thus, equation (177) will have the solution
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IS I --

Sam, 31.1E i

where constants T, =..T are determined by equations22

- ,.-(19)

•,7Y+ .. -- co+

ma

I sin
fl/. (18o)

ni..- f,,,:

+ 2

(CMi

where

I (A2~Cttz.!~~j(182)

n sin .03 4 do

xQiJJ/jJJ..,.....L1 ' i.2 ,.o2 juvJ9lt

ao

pini

k!- 1, 2. n ) . 8
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Assuming in (181) ?t,-t, we will find

where

P (81a(1814)

is compressing force taken over interval OCx~i i.e., one period.

Substituting (183) in (180) and assuming in (179), (180) and (182)

TM T SO- x, we will find

W 7

+ I-(185)
as lbt 'i v eis, 7"

where ve, Ta ..-,P. are determined by equations

P

N ~ sin -10 5-60)
Y., IS, - -

T (186)
YP 1(a,+b,)+

14-I
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and

4 Ok~a arm~
~i

rn-I

x #'(),,i - --r =) . , -, ,..o,. (17aSS

So that pressure p(w), determined by formula (185), is limited

everywhere in the region of contact, including points x am and

srnbm(m--d.2, ... , a), conditions

m0-

-j-,S. VI Ol sin

Xf'(t)ctg-[(t-a)dt, k,2, ..., ni. (188)

must be fulfilled. Formulas (185), (186), (187) and (188) completely

solve the contact problem examined in this chapter by determining
the region of contact and pressure p(x). Equations (.186), a187) and

(188) determine the abscissas of beginning and ends of sections of
contact a1, a,, ... , a,, 6,, b,, ..., and constants ,, Y,,.-, ,, after which

formula (185) determines pressure p(x) in the region of contact.

If' pressing on the lower elastic half-plane in interval O~szl.

i.e., within one period, are n separate bodies, and compressing

forces P,,P,,..., P.. which act on each of these bodies are assigned, '
then instead of equations (187) we will have equations
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°44- Co ,,"" --T da
-o

.,.+ ~I' IbT +

f~

*J -, A-1),

and in equations (186) P must be in this case understood as the sum

Let us also note that if some of the boundaries of sections of

contact are predetermined beforehand by the configuration of the

compressible bodies, as in the case of the pressure of the stamp with

right angles on the elastic half-plane, then the appropriate

equations of (188) must be dropped.

In conclusion of this section let us examine the simplest

examples.

1) Let us examine the pressure on the lower elastic half-plane

of the stamp having outlines shown in Fig. 22. In this case
nhich when 1a c<rz<d+a, and equation (177)

takes the form

d-P= ... . (191)
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iFig. 22.

when a-&<O<u e,

Us r.

In Chapter I we showed that equation

S ()in 1 ~d?-cost., *-w<0<%+d

has the solution

(see formula (338) of Chapter I). Thus, equation (191) has the

solution

1(
- --uI/ -M---- << (192)

Substituting (183) into (192) and assuming according to (176) and

£ -a<z< . (193)

Figure 23 shows graphs of pressure p under the stamp, which

are plotted in accordance with formula (193) for different values of

ratio When 1- (im0,5), as one can see from Fig. 22, the bases

of the stamps merge, and we arrive at a pressure evenly distributed

under the stamp pw.- When l--co(- -!.O, we arrive at the case of one

section of the contact examined in § 3, and we will obtain the same

graph of pressure p(x) which is in leig. 13.
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Fig 24

)Let us a th a e now yPg 2A14) ,cnsat nfoml

(194) determines the curvature at the point of contact. Substituting

(1914) into (175), we find

f~z~m- A cost- + coast.,

and equation (177) will for this case have the form

CAO +carat.,b (195)

153



if by a we designate the half-width of the section of contact.

In Chapter I we showed that equation

u+0

has the solution

P( : o) 2

(see formulas (354) and (355) of Chapter I).

Thus, equation (195) will have the solution

2+ )C041 11FO-30 +@c)s¢0_ -<<<<1, (196 )

si nm  (197)

Ai*

Substituting (183) into (197) and assuming in (196) and (197) ,--z,2-

- according to (176) and (178), we will find

2 X)z

,, ~ 2 (of + 8S) , ,-a <z<a,

aresin (199)T A

Formula (199) determines the half-width of the section of contact

a, and formula (198) - the pressure p in the region of contact.

As can be seen from formula (199), when

of 5 P+ 0)- (200)
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i.e., complete contact of compressible bodies occurs along the

.ntire Ox axis. Using designation (200)

it is possible- to give formulas (198) and (199) the form

2+ ).2Cos~ /CosrnWJ-r-l (201)

Setting different values of the ratio a/Z and calculating further

by formulas (201) at first l0/Z, and then p, we obtain graphs of

pressure p in the region of contact depicted in Fig. 25. These

graphs show the dependence of pressure p in the region of contact

on the period t at fixee Z, i.e., according to (200) at fixed

elastic constants, compressing force P and at fixed constant A, i.e.,

at fixed curvature at the point of initial contact. In the maximum

case when I = , /l = 0.5 (complete contact of elastic bodies along

the entire Ox axis), the pressure p changes according to sinusoid.

In the other maximum case when .c,/!.*, we arrive at the initial
contact of the compressible bodies at one point and obtain the

distribution of pressure in the region of contact along the ellipse,

already obtained earlier by us in § 2. Curves Jn Fig. 25 also give

a clear representation about the mutual effect of pressure on the

neighboring sections.

Fig. 25.
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§ 6. Contact Problem in the Presence of
Frictional Forces

Thus far we assumed that friction between compressible bodies

is absent, and that in the region of contact only normal pressure

p(x) acts on the compressed bodies. Let us consider now the case

when between the compressible bodies friction' takes place. Let us

assume that compressible bodies are found on the threshold of

equilibrium and in the region of contact between normal and tangential

stresses there is the relation

(202)

where k - coefficient of friction. Thus, at the point of contact

with the abscissa x in the presence of normal pressure p(x) the

tangential stress t(x) = kp(x) will also act. Due to the presence

of these tangential stresses, end points of compressible bodies with

the abscissa x will accomplish additional elastic displacements in

the direction of the Oy axis, which we will designate by v4 and

As is known from the theory of elasticity, these displacements will

be connected with the tangential stress t(x) = kp(x) by relation

__z . L(-) (203)72- 0,,Z" = o7

or

dv 6 k ) (204)

where G1 and G2 are shear moduli of compressible materials.

Integrating (204) with respect to x, we will find

'This problem was solved by N. I. Muskhelishvili, L. A. Galin
and in part by N. I. Glagolev. See Academician N. I. Muskhelishvili,
Singular integral equations; L. A. Galin, Mixed problems of the
theory of elasticity with frictional forces for a half-plane, Reports
of the Academy of Sciences of the USSR, Vol. XXIX, No. 3, 1943;
N. I. Glagolev, Elastic stresses along bases of a dam, Reports of the
Academy of Sciences of the USSR, Vol. XXXTV, No. 7, 1942.
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tI

pmI(dt +coast., v;,'S:) dt +coast. (205)

In order to obtain the integral equation of the problem, into

condition (3) instead of displacements vI and v 2 , determined by

formulas (9) and (10), it is necessary to substitute displacements

V + vs and v + vO. Instead of the integral equation (12) let us

obtain equation

on S, (206)

or

PY)d*+w~pQ)1nW dsuavf(x)on S, (207)

where

vim (208)

f(209)

For simplicity we will subsequently assume that the region of

contact S is composed of one section. If by 2a we designate the

length of this section and dispose the origin of the coordinates

in the center of the section of contact, then equation (206) will

have the form

t (8) dtsYI(Z)o -a<x<d* (210)

Using formulas (391) and (392) of Chapter I for the solution of the

integral equation (356) of Chapter I, we ll obtain the following

solution to equation (210):
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-"I +T : .- (211)

where

Pa S p M, dt, ( 212 )

I|
8 1

I.e., constitutes the compressing force, and

IM a g (213)

Substituting (208) into (213), we will find

7 inIaet (9A + 2)_ ( 214 )

So that the pressure p(x), determined by formula (211), was limited

everywhere in the region of contact, including points x = -a and

--- 4xw ,teeherbeflild hs oniin

P-t W p s)pa (212)

and

-- T '()dt di. -(216)

Condition (216) can be given the form

/'(t) Q. '21-4'

everywhee inth region '-, ofconta,= includin poins_)= - an

Vat I oM FY

or
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G+DT f(I) , (217)

Using the relation (216), condition (215) can be given the form

cosg (-2tP,

or

C,,7 - -(218)
-g

Using relations (217) and (218), we will find

I a

t 8 it ( i r()i +,,P. (219)

Substituting (219) into (211), we will'find

(Z)~~ [a+, M (z '(a ) (-3

-4 < < a. (220)

-0

Condition (217) predetermines the selection of the origin of the

coordinates, i.e., determines the position of the section of contact,

equation (218) determines the half-width of the section of contact a,

and formula (220) determines pressure p(x) in the region of contact.

Thus, formulas (214), (217), (218) and (220) completely solve the

problem by determining the region of contact and pressure p(x).

When k = 0, i.e., with the absence of friction y = 0 according to

159



(214). Assuming y 0 in (217), (218) and (220), we will obtain

formulas (32), (33) and (34), derived by us earlier on the assumption

of the absence of friction.

If the region of contact is predetermined beforehand by the

configuration of the compressible bodies, conditions (215) and (216)

are dropped, and pressure p(x) is determined directly by formula

(211). Thus, for example, if a stamp with right angles, which is

under the action of the normal force P and tangent force T, presses

on the elastic half-plane (Fig. 26a), then f(x) - const when

-a < x < a, and formula (211) gives

(). , ,_(221)

-Figure 26b shows the distribution of pressure p(x) under the stamp

for y = 0.05. In the absence of friction, i.e., when y 0, formula

(221) passes into formula (116) derived by us earlier for this case.

Fig. 26a.
4 I

I ttPal

* Fig. 26b.
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§ 7. ComPression of Elastic Bodies Limited by
Cylindrical Surfaces the Radii of

Which Are Almost Equal

Let us now examine the problem about the compression of two

elastic bodies, one of which has the form of a circular cylinder,

and the other has a circular cylindrical cut (Fig. 27). Let us

designate by r1 and r radii of cylindrical surfaces limiting the

compressible bodies. If these radii are minutely different from one

another, then with the compression of elastic bodies the contact

between their surfaces can spread over a considerable part of these

surfaces, and thus, the theory of compression, discussed by us in

§ 1 of this chapter, will already be inapplicable. Below we derive

the equation determining in this case the distribution of pressure

over the surface of compression.

Fig.27

Let us assume that A1 and A2 are two points of elastic bodies,

touching with compression (Fig. 27 and Fig. 28), A is the point of

initial contact of the compressible bodies, and 0 is the angle of

AO A Let us assume that further AIA' and A2A' are elastic displace-

ments of points Al and A2. Then the segment A'A; will constitute

the approach of the elastic bodies with compression, due to which

contact between points A1 and A2 is carried out. We assume here

that resultants of compressing forces pass through the point of

initial contact of compressible bodies A and centers 01 and 02 so

that a relative turn of the compressible bodies does not occur, and

only relative forward displacement of the bodies with compression

appears. Let us designate further by ulr and u2r the normal elastic

displacements of points A1 and A2 (segments A1 Al and A2 A" in Fig. 28)
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Fig. 28.

and by a - the approach of the bodies with compression In view of
the smallness of the elastic displacements, it is possible to take

segment BC in Fig. 28 equal to segment A2A". Then from Fig. 28 we

will find

14W+U 2 1 '- CO 9-
--7 . (222)

Let us calculate now segment AB. Since point A lies on the
internal and point B on the external cylindrical surface, 0A r ,

0 = r2 (Fig. 29). As can be seen from Fig. 29, il: is possible
to assume approximately

.I*-scos 4, (223)

since the difference in radii r2 - 1 = 01C on assumption is minute.
The relation (223) can be given the form

,-(r, +.4,B)m(r. -r) c0r,

whence

4.8(, - -' (i - oa 9). (224 )

Substituting (224) into (222), we will obtain the relation

U, + U, Cos -Cos (), (225)
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Fig. 29.

which should take place in the region of contact. We will subsequentll

assume that surfaces of compressible bodies are perfectly smooth.

Then acting on the surface of contact will be only normal pressure,

which we designate by p(f). Let us express now displacements ulr

and u21 , which enter into the relation (225), In terms of the unknown

pressure p( ). Let us consider for this purpose the action of the

concentrated pressure on the elastic body limited by circular

cylindrical surface (Fig. 30). As is known, in this case of forces

P, shown in Fig. 30, cause in the elastic body simple radial dis-

tributions of stresses and uniform expansion1 '. Under the impact of

these forces, point A accomplishes radial elastic displacement in the

direction of center 0:

whregmp [20 (1 +e 1 tgijJ+%siajyi] ,(226)

where

4' (A+p)'

X and p - elastic constants of the compressible body. Analogously,

point A of the infinite elastic body with a circular cylindrical

cut under the impact of forces P shown in Fig. 31, accomplishes a

radial elastic displacement in a direction from the center 0:

;ua-P(..2Dcos ?lagUj1+xs~1i).q (227)

'See Timoshenko S. P., Theory of elasticity, 1937, p. 118.
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Fig. 30. Fig 31.

Let us now calculate the displacement ulr, which enters into the

relation (225). If p(*) is the normal pressure on the surface of

contact, then on the element KL of the internal cylinder (Fig. 32)

force p(?')rsd?' will act. Jointly with the same force applied to the

diametrically opposite point of the cylinder, this force will cause

at point A' a radial displacement dulr , which accorUing to (226) will

equal

du, --p( )r -20, 1 +

+ CM (?-- alltgI l+- -

+;sini?- 'l} ?'. (228)

Let us assume that further, as is shown in Fig. 32, that region of

contact corresponds to a change in angle 0 within limits of -00 to

00. Then we will find the complete radial displacement of point A'

by integrating the expression for the elementary displacement du l

with respect to 0' within limits of -00 to 0:

4. +,gi-l}d. (229)

With derivation of formula (229) we assamed that the external compres-

sing forces, which act on the internal cylinder, are distributed

along its surface symmetrical to the pressure which they cause in the

region of contact, This assumption is permissible due to the fact

that the pressure in the region of contact depends little on how

external compressing forces are applied, and with solution of the
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Fig. 32.

contact problem it is possible to be distracted from the distribution

of external compressing forces similar to the way we did this in

§ 1 of this chapter with the derivation of the fundamental equation of

the contact problem.

Literally repeating the reasonings conducted by us in the

derivation of formula (229), we will find in conformity with (227)

the following expression for the displacement u2r:

-P.

d? (230)

Substituting (229) and (230) into (225), we will obtain the equation1

'p

2 (Or+ O,r,) p co') c ( - In tg d'+

+ (',Pg, ltqlry) p (?") sin -? I d?'- 20,-, p p('dq,=

a =Cos , (re Par) (i -Cos j),
?< <, (231)

where

'For the numerical solution of equation (231) the method of
finite differences is very convenient (see Appendix 2).
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l, i~ and A2, 2 - elastic constants of the compressible bodies.

Let us now consider the function of angle 0:

+ ( r, +,, [ x p (V) cog (,- ) d,' -

-p cW)c dc?)d"D]. (232)
9

Let us calculate the derivative J'( ). Since when c >

and when $ < O'

we will have

i~I~i~?I(233)

Taking into account formula (230), from (232) we will find

J1''' 2 (O,, + Or,) [ F (?') cos (?- ' In tg L di,' +

+-p j)d"']-(tip-+IV) sin ['
+ p(?')in(-)d'- 2p(it)]
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whence

2 (8r 22 a(P t

(234$)

h

Substituting (234$) into (231), we will find

2+2. + + p (9) -

whence

• 1

+ 20.r. p( dy'(r.-1 oy) C (235)
-W.

Integrating both sides of equality (235) with respect to we will

find

+ [c20o., p(d? -rg-r+ ,-),in?+ (236)

where 0 arbitrary constant.

Differentiating both sides of relation 231) with respect to

and taking into account (233), we will obtain
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whence

Substituting (237) into (232), we will find

jW-(O,? + Oa) p (y)~ ctg (9 - ?I ,?- (za +r -is j Iz .28

x p p(0') d, +,to?, -,.< <? (239)

where

O~ar,~ p (?') d91 +.- (f.?. (2140)

Let us produce in equation (239) the change in variables, having set

tgym;l tav' -1. (2141)
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Let us find

and, thus, equation (239) will take the form

(Ora+8.,) p(arctgt) 14t). it-

*P ( 18 )(z4

+ *jS11 5 ~dImP+Yarct~z, -G<8<a, (242)

where

a- tg ?,. (243)

Using the identity

___________ 
+ - -7

it is possible to give to equation 242 (form)

-- o . + o) i- + P Oc99d

Assuming further

(8 -,- ' (245)--
t+ ' di .g (s).

we will find

p (arctg z) + ( j -')g(. (246)

Substituting (246) into (244), we will have
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*'

-e3w-(Oa.or, 6) *(t) td1+T,Arotg=.-ox < (247)

Using identity

let us give to equation (2147) the form

(Oars + Oars) 0 + Z,) L.jd _(wa, +w.) ct(s)-
-.

--S

P+ (Oars + oars) x a't t+y rt , a<S<C 28

Assuming further in equation (2148-)

g () - g () Kr +-r.' (249)

we will have

0,r3 +0. 2)( + ')I S -(,d+_ (war, + XI)c(3)- 11
(Or at I+Z)S-I

. (Ora+ Osl.J z[g (a) -C (-G)1I ,ctG a

or 
I

+ +

where

(251)
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Substituting (249j into (246), we will find

p (actg Z). (0 + 1 s (X) (252)

Hence

or, assuming Is,.tgjy,

polo,?(25 3)

Substituting (240) into (251), we will find

e
(254)

Introducing designation

S #(?d =to (255)

we will be able to give formula (254) the form

- , - .(256)

Substituting (252) in (250) and using designation (256), we will

have

M -+ --( .o,)s ,,.t-i -- =z= (257)

Assuming in (252) x-tgr, we will find

P(9)=s00'"n(to ). (258)
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Thus, detecting from equation (257) function g(x), by the formula

(258) we will find the unknown pressure p(O). Equation (257)

contains two unknown constants q and a = tg 0" Thus, the expression

for pressure p(O) found by formula (258) will contain unknown

constants q and 0. Designating the resultant of the external

compressing forces by P we will, as one can see from Fig. 28, have

W p Cos') Td4'-WP. (259)

Substituting the expression found for p(O) into (256) and (259),

we will obtain two equations from which we will find the unknown

constants q and 0"

Thus, the contact problem examined in this section is reduced

by us to the solution of equation (257). By introducing designations

-t (260)

1(z) (261)

we will be able to write equation (257) in the form

IL )(5z+P t(3, - <<a (..262)

Equation (262) coincides with equation (411) in § 7 of Chapter I.

As we showed in Chapter I, by replacing X(x) by the approximate

expression of the form

be + 4z+.- - + bee (63

we will obtain the equation for which it is possible to indicate the

exact solution

172



N!

+~~m- i (1)'.( c)[it)1 (z) (1)) ds+

+1 !-Wt) -=]snj~) p() 1

+'S P (S) + ca ii (z). (264)

where

P(I)-ja-- - (265)

' (z) +aax+" + (266)

1 " (267)

The method of determination of constants es, ca, as, ***..g., which enter

into the indicated solution, was also shown in Chapter I.

Let us note that in our case

(-a)- -g~).(268) VM

Indeed, in virtue of the symmetry function p(o) should be even,

and, consequently, function g'(x), according to (252), should also

be even. Consequently,

0; (269)
-e

Further, as one can see from (.261),

I(0)-0. (.270)

Assuming in (262) x = 0 and taking into account (269) and (270)a we

will find

g(O)- O. (271)
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Thus

which was required to prove.

From relation (253), (255) and (268) it follows that

g(a)a, g(--)--.. . (272)

Substituting (272) into (264), we will find

S(z) Ir

-- x'z_ [ ( ) -. (tie+ (z) + , sin(). (273)

Further from formula (267) it follows that

(0) . (274)

Assuming in (273) x - 0 and taking into account (271) and (274), we )
will find

e0. (275)

4

Assuming in (273) x = a and taking into account (275) and (272), we

will find

0

Substituting (273) into equation (427) of § 7 of Chapter I and

taking into account (275), we will obtain n equations
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6 "4

X_ A9, ... =00 R,-ij, (277)

where

Ph ( + ,,= +.. + b,,,) (h., + (To I +.. + 6,,,." "

A-o . -1 (278)

according to the formulas (425) of § 7 of Chapter I.

Thus, we obtained the system of n + Ist equation (276) and (277)

for the determtnation of constants a., s,,.9 P, which enter into

expression (266) of function R(x), and constant 2.

Differentiating (273) with respect to x and taking into account

(267) and (275), we will find

(z)~ (X) +(~

+ ( j(+..(279)

By introducing designation

, (280)

we will find according to (260) and (267)

T' (281)
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Substituting (279) into (258) and taking into account (281), we will

obtain the following expression for the unknown function p(o):

+ lW A-+ ±L Mgmin(t Act +

+ "Imk(? -a.-tg ±i +e,k owtl,. (282)

Substituting (282) into (255) and (259), we will find constants q and

a = tg *0' which enter into the expression obtained for p( ), and
we complete the solution of the contact problem examined in this

section.

In conclusion of this section we will give graphs of the

pressure' p(o) for three values of angle 0, namely, for 00 = 300,

O0 - 500 and 00 = 600 (Fig. 33), calculated by author for the case

when the elastic constants of both compressible bodies are identical

and Poisson's ratio is equal to 0.3. The dashed line on these

graphs shows the distribution of pressure found with respect to

known approx.imate formula 2

p

which provides contact of the compressible bodies along the

cylindrical surface of radius rI in the region of values of angle 4:

--9 <9<9..

Figure 34 shows the dependence between angle 0 and applied force P

(in Fig. 33 and Fig. 34 E - elastic modulus = r2 - rl)" The dashed

'For the calculation of them see Appendix 2.

2Pathon, Ye. 0. and Gorbunov, B. N. Steel bridges, Vol. II,
Edition 3, Kiev, 1931, p. 23.
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line shows the dependence between these values, which is calculated

in accordance with the theory of Hertz discussed by us in § 1 of

this chapter. This comparison clearly demonstrates unacceptability

of the theory of Hertz in the contact problem examined by us in this

section.

§ 8. Solution to the Problem about the Pressure of a
Rigid Stamp on an Elastic Half-Plane on the

Basis of a New Hypothesis

The problem about the compression of two elastic bodies was

first solved on the assumption that both bodies have an ideally

smooth surface. In a number of contemporary investigations the

compression of elastic bodies in the presence of friction between

them is examined. It would be more correct, meanwhile, in the solution

of the contact problem to consider the microstructure of the surface

of the compressible bodies. Contemporary physics does not give any

completed theory of the surface structure of a solid. In view of

this in this section we proceed in the solution of the contact

problem from the following assumptions. If acting on the surface

of an elastic body is a certain normal pressure, then this pressure

causeb lastic displacements in the body, which appear due to the

deformation of the whole elastic body on the whole and which are

determined by differential equations of the theory of elasticity.

hus, for example, if acting on the boundary of the elastic half-plane

i- the normal pressure p(x) in region -a<x<a, then the point

:ying on the boundary of the elastic half-plane having the abscissa

x icccmplishes a normal elastic displacement equal to (see formula

Chapter II)

C I2

p (t) - d i + con a.'  0 2-(1--o). C283)

i, , is the indict'ced displacements, tie normal rressure

, wn point of the surface of the elastic body should cause

, ;tI11 a certain additional normal isplacement,

+ n r) purely local surface strains predetermined

-,;rture cf the given elastic body. In this section
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we will assume that this displacement is proportional to the normal

pr -,sure acting at a given point of the surface of the elastic body.

Thus, if acting on the boundary of the elastic half-plane is the

normal pressure p(x) in region -a < x < a, then this additional

displacement will be equal to zero when Izs>a and will equal

kp(3) (284)

when 1:l<e, where k is a certain coefficient dependent on the

surface structure of the elastic body. The complete normal displace-

ment of the end point of the elastic half-space caused by the normal

pressure p(x) will be equal to the sum of displacements determined

by formulas (283) and (284), i.e., will equal

kp(z)+o plt)la _ dtS ',--4<2<4 (285)

Let us now return to the problem about the pressure of a rigid

stamp on the elastic half-plane examined by us in § 3 of this

chapter. If the stamp has a flat base with width 2a, then when

-a < x < a the normal displacement of end points of the elastic

half-plane should remain constant. Thus, according to expression

(285), for this normal displacement to determine the pressure p(x)

under the stamp we will have equation
2

kplz-)+# ()] - ou. -<< (286)
-- -0

instead of equation (115).

Differentiating with respect to x both sides of equation (286),

we will obtain equation

'Let us note that the hypothesis advanced by us in this section
represents a unique combination of Hertz's theory with Winkler'sk
hypothesis. When k - 0 we arrive at Hertz's theory, and when k
we arrive at Winkler's theory.

2See Appendix 2, Section 4, for a numerical solution of equation
(286).
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(S) ., m=o. +-4<<,. C287)

where Ima.

This equation for function p(x) coincides with equation (450)

in § 7 of Chapter I for function g(x) when

1()-o, ).(s)=conit,

According to formula (467) in § 7 of Chapter I, we will find in this

case

+c.€ +e. n . (.288)

where

, + (289)

Having constructed for X the approximate expression of the form

(290)

we will find constants . which enter into expressions for

S(x), from equations

f. ,(,) . P.. (8) . di. , P ,s) .
___-_____(-__ 'o )&()e

A kkO, 1, ... ,n-, (291)

where

P (t) (b,+b 1 : + ... + 40e) (a*. + . ... +O -
-( a. + ,t + .. + aki) (bk., + b. , + .. + b O O -

k-0o, |,., i "(292)
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(see formulas (469) and (425) in § 7 of Chapter I).

With the proper selection of coefficients k, kl, and k2 ,

function

o,+kz (293)

in the interval -a<x<a is close to unity. Thus, for example, if,

following N. I. Muskhelishvillil we set

k,=1, k, -O,9, k,-O, (294)

we will have the following values of function p(x):

S 0.14 0,2a 0.34 0, a 0.5a 0,6a 0,7a 0,8& 0.9a1

t.z 100 t, 02 to ,03 1,103 t,06 1,06 1,03 0.95 0,75

Thus, it is possible approximately to assume that

La,+ a -. (295)

By comparing (295) with (290), we will find

n-2, ?.-;.ka*, a,=O, a=-).kk,, b .a, bciO, b%=ak,. (296)

Substituting (296) into (292), we will obtain

P, (t) a a l .ka akt ).ka (k, - k) t, } (297)
~~~~P (1 ) ,,a.A k1 - .ka: ak* -- ").ka' ( kI - k,).

Substituting (296) and (297) into (291), we will obtain equations

,see N. I. Muskhelishvili, Singular integral equations, p. 386.
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° [ t ' -. (a) .. p(-a')/3

di~ d-4- + Pa- d cal+k,) (298)

P 4 LT i p() p(-a)

But since in virtue of symmetry, function p(x) should be even, then

p [ d Sa0+k,,p 0, (299)

p(-a)=p(). (300)

Substituting (299) and (300) into the second of equations (298),

we will find

P,=O. (301)

and the first of equations (298) can be represented in the form

di- 2p (a) (302)

a (j_+ kj Aka(k -k,)-o

Substituting (296) and (301) into (289,', we will find

Sx . (303)A : , (a* + k ')

Substituting (303) and (300) into (288), we will obtain

, ,- d +

+CjCO3 +Csi'j. (3011)

Assuming in (304)

z=E, t-aT, (305)
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we will find

b (a) f- +

+ CA Cos + Casin (306)

Let us introduce further the designations

" C, (307)

I !

j+1,- , h( C-)-'- (308)
0 u ,

Then formula (306) can be given the form

p (a c) + p (a) ,) + c, cos C.+€, sin C'. (309)

Since function p(x) should be even, we should have

,. (310)

Assuming in (309) = 1 and taking into account (310), we will find

p (a) =P(i,c) + p (4I,(, c) + C, COS C. (311)

Substituting into (302) expressions for t and a0 from (305) and (307),

we will obtain

S P ( 4 a 1 ) ( i ' -V -k-- c, " "P( 4
1 1+ka ks-k 3.-1

If further we designate compressing force ivF ws . .

S p(t) dt P,
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or, if one were to assume t aT:

p (av)dt-no (313)
-1

Substituting (310) into (309), we will find

p (a- ) v / ! ) + p 'a), (4;, c) + ca cos e ( 314 )

Substituting (314) into (312) and (313) and Joining relation (311)
to the obtained equations, we will obtain a system of three linear
equations:

2- 0 (+ kj%') d+ r2 T] + '

V( -5 " + k,_

COS+ C CT _t, (315)
2 I 

-k,__I,~~~~~ (1, C) d-. + P (a) 1(, C) d-c + 2c, " i .. , __

c) l(l )+ p(a)[/h 0 1C)- I]I+ C, C03C=0, j

for the determination of three unknown constants , p(a) and c1.
Having detected B, p(a) and c from equations (315) and substituting
their values into (14), we will find the unknown pressure under the
stamp p(x).

Figure 35 show-s graphs of pressure p(x) under the stamp for the~Ib
following values of parameter c--:

cuz0, c =0,!, Cn-1,

= , ',rrespond3 to +he cori,',.t ona thuory of tie tamp, in
-tr t W, .v1 W r. zX:-a iV ~ r !.r. n *
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Fig. 35.

At finite values of the parameter c pressure p(x) remains limited,

and in the limiting case c = 0 we will obtain the evenly distributed

pressure under the stamp.

U'
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C H A P T E R III

AXISYMMETRICAL CONTACT PROBLEM

§ 1. Matnematical Introduction to the Axisymmetrical
Contact Problem of the Theory of Elasticity

In this section we show the general solution of the fundamental

equation of the axisymmetrical contact problem of the theory of

elasticity

p (r') do---A 0 ; < r< a ,

where region of integration Z is a circle of radius a (Fig. 36), da -

element of the area of this circle, R - distance between point A,

which remains motionless in the process of integration, and point A'

included inside element da, p(r) - unknown function of distance r'

from point A' to the center of circle 0 subject tu determination

from equation (1), and, finally, f(r) - assigned function of distance

2, from point A to the center of circle 0. With respect to the

assigned function f(r), below we will assume that it is continuous

together with its first derivative when O<r<a.

Let us present integral extended on the area of circle Z, which

stands in the left side of equation (1) in the form of a multiple

integral, selecting polar ccordinates R and p aL variables of

Integration with the center at point A. Integration with respect to

the variable R mu-t be produced within 0 to R0 , where R0 - distance

It



ds Fig. 36.

between points A and B in Fig. 36, and subsequent integration

with respect to - within 0 to 2Tr. The area of element do is equal

to RdRdp and, thus, equation (1) will take the form

Sd p (r)dRI 0 O<r<a. (2)

Distances r' and R0 entering into equation (2) are expressed in

terms of variables R and p by relations (see Fig. 36)

k-R'- 2tRrcos i + r', (3)
R.- cos +!a'-r'sinsl. (4)

Let us introduce into the consideration angle 0, determined by

relation

Cos 0 = R - r cos 040<x

(as can be seen from Fi. 36, the rati 3tandlng in the right jide

of equality (5), in absolute value doeo riot , xceed unity). Let u,

designate further by 0(p) that value whitih - rtriile 0 when 27

? Cos 4, ~~~~Cos 0()= /-

and let u.; turn in equaton (.2) fr-cm I-h va-fat I, -',f Int-,ration R

to the variable . Frn m t we fIni



r cos 4- cos 3 Va - r sin i,

dR= -sin3va s- r sin".dO,

whence

Po 10)

~ (r') dRa p (r') 11aT-r si1'y sin d8A (7)
0

since according to relations (4), (5) and (6) angle 0 is changed

from 0 to () when R is changed from R0 to 0. Substituting (7)

into (2), we obtain equation

20 td I r ') Vas -,'sn'.- iU odO (P,o 0o<,r<oa.

From relations (3) and (5) we find

,, -( -,rco, 9)' +r'if', = co,. O(a'-,rin. )+',aia' -

vc it--(a rsin9)sznB0. (9)

Equation (8) can be presented in the form

! S p(r')a/ar'si'? sin 0d+
I U

Replacing 0 by r-0, we find

sq
\p(r')si du0dOu - p(r')sinOdO, (11)

sint, acco zirg to ('}) with thks replacement r' ret-iins itL value.

!':,lrg tne r._Iation (11) and repla,'Ini 4 by 7r + , w, ot, iin

IE



-St (12)

But from relation (6) it follows that

whence

0{ +,W=.0Ct~o(13) _

since according to condition 05( )<=. Substituting (13) into (12),

we find

Sdtp fr))Vi-r-n'sigan 0 A
*w. I.

Substituting (114) into (10), we obtain equation

C ad'?5P(r') Va-r s~- n-' uinOdD=I(r), O<r<a. (J5)

Substituting (9) into (15), we will have

S dip pI a'-(a'-r'sin'l) si'Jlva'-rlsinl4 sin, ad a,(r), (16)

O<r<0.

Let us introduce further designation
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Using this designation, we can give to equation (16) the form

sF(i)d =l(r), si<n q (18)

Setting in (17) rF-VW--O we obtain

Introducing designati.ons

(20)

P ( ) - 4 O(,,), (21)

we will be able to give to equation (19) the form

C(piaOO)dOa.G()# 0< . (22)

Setting in (20) p- a'V"-, we find:

'() ' O'", P 0<r<e. (23)

From (21) it follows that

o<P<,. (24)

Thus, determining from equation (18) function F(r), from formula
(24) we will find function G(p). Determining further from equation
(22) function g(p), by formula (23) we will find function p(r),
which represents the solution of the initial equation (1). Thus,
we reduced the solution of equation (1) to the sequential solution of
two identical equations (18) and (22) for functions F(r) and g(p).
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Replacing by i-I, we find

ic

whence

S (25)

Substituting (25) into (18)t let us give to equation (16) the form:

F(?A9jW -/,)t 0<1'<@,# (26)

similarly, equation (22) can be given the form

TOP d mGO). 0< < (27)

In order to obtain the solution to equations (26) and (27), let us

prove that for any function f(r) continuous together with its first

derivative when O<r<* there is the identity

541? g!(p)-(O)h, O<r<. (28)

Let us introduce instead of variable of integration i a new variable

, assuming

Let us find
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Using relation (29) and changing the order of integration, we will

find

Let us introduce further, instead of the variable of integration

the new variable n, assuming nmisinj?.

We will find

* ~ f S' .r , ' V419

0 L S 1 P0 sny (N (30)
0- 7

Sub7tituting (31) Into (30)I we find

WF

If s in t e muthe Inteain tho the arbe oitegra of

relation (32) we examine variables and q as rectangular coordinate$*

then the region of integration will be the triangle shaded in

Fig. 37. Actually, first at fixed & integration is onducted with

respect to n from n a 0 to n a , then integration with respect to
from 0 to r is produced. If in this multiple integral we change

the order of integration, then in order that the region of integration

is preserved, we must initially, with fixed n, integrate with respect

to & from & = n to & a r and then integrate with respect to n from

0 to r (Fig. 37). Thus, if one were to change the order of

integration, relation (32) will take the form

1d2 ) / i n- dq(3



1ip. 37

Let us replace now the variable of Integration by a new variable
t, etting

Let us find

' - (34)

I I.al r
Substituting (34) into (33), we obtain

(ftl gin O.a)rix gtmf f(1~) d,'[()m(O)L,

QED.

Using identity (28), it is easy to obtain the solution to

equation (26). Let us assume first that there exists function F(r),
which is continuous together with its first derivative when O<P<e
and which satisfies equation (26). Differentiating both sides of

equation (26) with respect to r, we will obtain

P (,PJ s)in ei 9d- 1 (P, O<,<&.. (35)
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-Replacing in (35) r by r sin * and integrating both sides of the
obtained relation *ith respect to "within limits fro_ 0 -to -W/2, we

will find

S 1(?Snlsnsitd S=).vv (rmn), 0 :< #. (36)

Multiplying both sides cf relation (36) by r and taking into account

identity (28), we obtaijn

j.FY -[F ,l (0)J.,' f (,sinyd?," 0<,<,g. (37)

Assuming in (26) r = 0, we find

-F(0)=I. (38)

Substituting (33) in (37), we will come to the conclusion that

if equation (26) has a solution continuous together with its first
derivative when O<r< , then this solution should have the form

'Rio

Let us prove now that function FG'), determined by, formula

(9), indeed satisfies equation (26). Using identity (.28), let us

find from (39)

F ( 0) F Si' in Psltvd

0 0 0

TlO+[r-0) 2"-ir), 0<r<a.o

i.e., fupction F(r), determined by formula (39), indeed satisfies

equation (26).

194



Analogously, equation (27) will have the solution

Substituting (39) and (40) into (24) and (23), we will find

~ ~ C'(Vn a sin)dl (42)0<,J "', .+
t4

O<r<a.

Formulas (41) and (42) determine the solution of the inivial equation

(1). It is possible, however, to present the solution in a more

convenient form for calculations. From (24) we find

Z,-..,G(,) Tv- ,1'P (43)

Substituting (43) into (42), we obtain

Pp'- 17

Let us produce now in (44) replacement of the variable of integration

, assuming

a'- (a'-r*) S' -- 5.

Let us find
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lxiII

ode •-. ,
• ,- ~ ~~i r is - of __ ; F5 slu _ r t --.=

Substituting (45) in (44), we find

PQ*' 0) 0.0 (46)

Formula (46), Jointly with formula (39), for function F(r) gives the

solution to the initial equation (1). Formula (39) can be given a

form similar to the form of formula (46), if one were to replace the

variable or integration * by the new variable a, assuming

Let us find

a, , • (. 1,7)
d?- ,;,,-oO (do"?) "Vd9 -d.  C47)

Substituting (47) into (39), we find

[O<r<a. (48)

In conclusion of this paragraph let us show one more simple

formula for the solution of the initial equation (1).

Below we will assume that function F(r) has a continuous second

derivative. Differentiating both sides of relation (39) with respect

to r, we will find
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2U S r(wii??iindI (149)

0<.<a.

Assuming In (49) r sin * = a, we will have (see (47)

Pf

P(---A LW+ , 0 <r<c. (50)
'6 Ir 1

Substituting (50) into (46), ..e find

POW as5 ,+ . 0<<e (51)

where

1 (52)

Substituting (48) into (52), we obtain

C-., [/(0) +a -f-," (53)

If in the multiple integral, which appears in formula (51),
variables of integration a and a are examined as rectangular
coordinates, then the region of integration will be the trapezium
shaded in Fig. 38. Actually, first at fixed e we integrate with
respect to a within a - 0 to a - a, and then we integrate with
respect to a within r to a. If one were to change the order of
integration, the initial integration with respect to 8 will have to
be conducted within a = r to s = a, if a < r, and within s = a to
a a, if a > r, i.e., within a to a, where

I =sr when c<r, 
(

s.=a when @>'. (51)

Subsequent integration with respect to a should be produced
within 0 to a. Thus, after a change of the order of integration
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--- .... Fig. 38.

formla (51) will take the form

Ok a.-
d-i i-+ + 0 P<4. (55)

When a < r, assuming

" amkr, (56)

we find according to (54)

Elti rds_____

an - - 5-7
I

The definite integral

N (58)

is called the elliptic integral of the first kind, F-" there are

detailed tables which give its value depending upon the upper limit

x and parameter k, called the modulus elliptic integral. Thus,

formula (57) can be given the form

a
when <r ms- F [(1, k) F( A)],

8(59)
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according to (56).

When a > r, assuming

(6r))

we will find according to (54)

SI

..- - (61)

Using designation (58), we will be able to give to formula (61)

the fo.m

when a>?IF (- .[FcI, k)--(zk)],

a.' k- (62)

according to (60).

Formulas (59) and (62) can be united into one:

s =. = I (1, k)- F A;, )], (6 3)S-- ST 08,Z - 1t ) at

where

Sk=.! when a<r,(

/" ~~-when a>r.

Substituting (63) into (55), we find

U_ ~~~~p(r) -t ax [ ° ¢ F (l, k)_ F(x,k;01 a + .V ', ~

0< r < a.
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In formula (65) x and k are functions of the variable of integration

a, which are determined by formula (64), and the constant c is

determined by formula (53).

Thus, for the solution of equation (1) we obtained two formulas:

formula (46), where function F(r) is determined by relation (48),

or relation (39), and formula (65). In those cases wnen function

F(r), appearing in formula (46), is determined in the el&mentary

functions, it is advantageous to use formula (46) as being simpler.

If, however, the definite integral, which appears in formula (48)

for function F(r), is not expressed in elementary functions and

requires methods of approximation of the calculation, it is more

profitable to use formula (65). Calculation of the integrand in

formula (65) is easily carried out with the help of tables for elliptic

integrals; after the series of values a, included in the interval

of integration (0, a) its numerical values are calculated, it is pos-

sible to calculate the value of the definite integral appearing in

formula (65) according to any method of approximation from the

theory of mechanical quadratures (by the trapezium formula, by the

Simpson formula, etc.).

§ 2. Compression of Elastic Bodies Limited by
Surfaces of Rotation

In this section we examine the axisymmetrical contact problem

of the theory of elasticity, i.e., the problem on the compression

of two elastic bodies limited by surfaces of rotation, where it is

assumed that the axes of symmetry of the compressible bodies coincide

and resultants of compressing forces lie on this general axis of

symmetry. Let us construct the system of cylindrical coordinates,

r, 0, z, directing the z axis along the common axis of symmetry of

compressible bodies and disposing origin of the coordinates at the

point of contact of the elastic bodies (Fig. 39). Let us assume that

Z -z, (r) and z -,(r (66)

equations of surfaces limiting the compressible bodies (we will

consider as the first - that body inside which positive semiaxis z

pastes). -ot 1;" assume that furlr A1 and A:, are two points of



Fig. 39.

surfaces of compressible bodies arriving In contact with compression,
and u. and 2 are their elastic displacements. The distance a betweei
points B1 and B2 in Pig. 39 constitutes the approach of elastic
bodies with compression and will be constant for no matter how many

pairs of points arriving in contact with compression we fulfilled
the construction shown in Pig. 39. if r is the distance from the

axis of symmetry on which points A. and A2 appear after compression,

then, disregarding smalls of a higher order, one can assume that prior
to the compression points Al and A2 had coordinate z equal according

to (66) to Xl(v) and -x 2 (r). Then from Fig. 39 it follows that

£r-.pM+gs(4+I,(r)-5,, (67)

where UlX and u2x are projections of elastic displacements uI and U2
on the x axis. Let us now turn to the calculation of these elastic

displacement.

We will consider surfaces of compressibel bodies to be perfectly

smooth and will designate by p(r) the normal pressure appearing
in the region of contact at distance r from the axis of symmetry.
We will further approximately consider that unknown displacements

U and u will be the same as if the pressure appearing in the
region of contact acted on the upper and lower elastic half-spaces

with the same elastic constants as those of the compressible bodies.

In virtue of the axial symmetry, the region of contact will be the
circle of a certain radius a unknown as yet (Fig. 40). Let us assume

that do is the element of area of this circle covering point A'
located at distance r' from the axis of symmetry. Acting on this

element of area will be the normal force p(r')do. As is known, the

normal force P, which acts on the elastic half-space, causes at
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distance R from the point of its application a normal displaaent

on the surface of the elastic medium equal' to P , where *..s '.-

elastic moduluse and V - Poisson's ratio.

Fig* 40*

Thus, the pressure acting on the element of area do causes

at point A, shown in Fig. 40, a normal elastic displacement dua

equal to

where R - distance between points A and A'. In order to obtain the

complete normal displacement u. at point A. which is at the distarce

r from the axis of symmetry, it is necessary to integrate the

elementary displacement du with respect to the whole area of

contact. Let us find

S (68)

if by Z we designate the circle of the radius a, which represents

the region of contact. Thus, the unknown displacements Ul8 and u2z

will equal

R M 0& i sum -#, S . (69)

where

,)a-- . *g.--!. (70)

'See Timoshenko, S. P., Theory of elasticity, 1937, p. 364.
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8 1 and E2 - elastic moduli, and V and 2 - Poisson's ratio of

* compressible bodies.

Substituting (69) into (67), we will obtain the equation

(0&+Og)SeiA!. -1 0r-~() O<'O (71)

or

p(l"d 8. r) <PG (72)

where

I') . C73)

Equation (72), obtained by us for the determination of pressure

p(r) in the region of contact, coincides with equation (1) of this

chapter studied by us in § 1. As we showed in § 1, the solution of

this equation is determined by formula (46):

'P 5"" 4. _ _ 0 <r<at (74)

where F(r) is the function determined by formula (48) or formula

(39). Substituting (73) into (48) and (39), we will find

2f

do 0<r<O, (75)

or

%12

0< r<a,

r
I
I
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since zA(O)- ;(O) =O (see Fig. 39). It is also possible to use

formula (65) for the unknown pressure p(2r) in the region of contact.

The solution obtained by us contains two unknown constants:

radius of the region of contact a and approach of bodies with

compression a. Let us turn to their determination.

As can be seen from formula (74), if F(a)*O, then pressure

p(r)-.co, when r-.a. Thus, so that the expression found by us for

pressure p(r) remains limited in the whole region of contact, it

is necessary that there is equality

P (a) -0. (77)

If condition (77) is fulfilled, formula (74) takes the form

@F'l()ds
M,.1 -F ,_, O<,<a. (78)

Pressure p(r), determined by formula (78), on boundary of the region

of contact, i.e., when r - a, becomes zero.

Substituting (75) and (76) into (77), we will obtain for the

approach of bodies with compression a formulas

(c) + o , (79)

or

aw [(asin?)+z*,(asin?)d?. (80)
U

Let us designate further in terms of P the magnitude of the

resultant of compressing forces. Pressure p(r) appearing in the

region of contact should balance force P, and consequently, integrating

the pressure p(r) with respect to the whole region of contact, we
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should obtain force P. With the designations accepted by us we

will obtain the condition

S, (81)

or, since the element of the area da in polar coordinates r', *' is

equal to r'dm'do', we have

Sd?, ~PO,dP
0 0

i.e.,

a

2t p()r',.' -p. (82)n '
Substituting (78) into (82), we will find

: z -,s.G P (83)

If in the obtained multiple integral, variables of integration

r' and 8 are examined as rectangular coordinates, the region of

integration will be the triangle shaded in Fig. 41. As can be seen

from the same figure, if one were to change the order of integration,

relation (83) will take the form

'1::: ; ma,(814)

or, since

we have

-... ~ F '1 s us P. (85)
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I

,Fig 41.,

arta

Fulfilling partial integration in (85), we obtain

a I

or

6 F(4da0-P (86)
U

in virtue of condition (77).

Substituting (75) into (86), we find

Oat-czes 5 l() +I (a) domu~p (8) (87)U U

SVui-ib. .*

Substituting (79) into (87), we obtain

ad- d ' (a) + do rP (0%+Os). (88)
U U U

If in the multiple integral, which appears in formula (88), variables

of integration s and a are examined as rectangular coordinates,

then the region of integration will be the triangle shaded in Fig. 42.

If one were to change the order of integration, then, as can be

seen from Fig. 42, we will have

.1d, + '" (2 do do '(a-)- -' ' d, (89)
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Fig. 42.

at

or, since

*a

we obtain

a' lea )+; si€  d r-- r- [,; (s) +?(.)I V'( ). (90)~U.•

Substituting (90) into (88), we find

[]£ or finally

i Assuming in (91) a a sin 0, it is possible to give to relation (91)

~the form

a' ![4 (asin )+ 4 (ai, )] sin,' - . . 0 + 0,). ( 92 )

Thus, the radius of the region of contact a is determined by

equation (91) or equation (92) equivalent to it. After constant a

is found$ the approach of bodies with compressicn a can be calculated

by formula (79) or formula (80). The distribution of pressure p in
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region of contact will be determined by formula (78), where F(r)

is the function determined by formula (75) or formula (76) equivalent

to it.

The formulas enumerated by us give the general solution of the

problem about the compression of two elastic bodies limited by

surfaces of rotation. Let us now turn to analysis of different

particular cases of axisymmetrical contact problem of theory of

elasticity.

First let us assume that the initial contact of compressible

elastic bodies is carried out at one point, and for surfaces of both

bodies this point is regular. In this case functions zl(r) and z2(r),

which determine the configuration of the compressible bodies, can be

expanded in Taylor series in neighborhood of point r a 0:

(0) + 2,'(0) I + 14 (0) Ps + I ... ,(04 ()+::0),+ ,;(0)'+ (0)+ .. • !(93)

Since we disposed the origin of cylindrical coordinates r, *, z at the

point of contact of the compressible bodies and axis z is perpendicu-

lar to the plane tangent to both surfaces of compressible bodies at

the point of their contact, we will have

Z': (0) = Z' (0) - 0. , :;(o) M 2. (o) -o. C9 4 )

Thus, according to (93) and (94) for the sum of functions z (r) + z2(r)

we will have the expansion

-. ()+4() , (O)+ -1 (O) (9X)

Let us first examine the case when the sum of the second derivatives

(0) + (0) 0. (96)
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In view of the smallness of elastic displacements and hence resulting

smallness of the region of contact, it is possible to take tor the

sum of functions zl(r) = z2(r) in the region of contact the approximal

expression

s1r2 '1)46 j(0) + (0)] ?' O<r<a, (97)

dropping in the expansion of (95) terms of the highest orders of

smallness. Introducing the designation

, *.+ o(98)

we will have in the examined case

z(r)+ z(r) -, O<P<a. (99)

Substituting (99) into (92), we will obtain the relation for the

determination of the radius of the region of contact a

2Aa$sia' ,pdq-.LwP(O.+4.). (100)

Since

Ufa *12

# inOydM- (-coss)d(cos)ua-cosv+.-CosSCmm-N

from (100) we find

am A (101)

Substituting (99) into (80), we obtain

a s2A'5sin 9 d- 2Aa'. (102)
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Substituting (101) into (102), we find

2 ... . -- (103)

Substituting (99) into (76), we obtain

%12
2 UP"i (in d d) 2 4-2A (lO4)

Substituting (104) into (78), we find

A UP

to- i-a (106)

Substituting (106) into (105), we find

O < r < <a. (107)

As we see, pressure p in the region of contact changes in the

axisymmetrical contact problem, depending upon the distance to the

initial point of contact, according to the same law as that in the

two-dimensional contact problem of the theory of elasticity.

Let us consider now the special case of the contact problem

when the sum of the second derivatives z1(r)+: (r) becomes zero when

r = 0:

(0) + Z;' (0) 0. (O108)
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For gener.lity we will assume that first term of expansion (95) not

turning into zero contains factor r in power 2n (coefficients

at all odd powers of r In this expansion must be equal to zero due

to the fact that functions z.(r) and z2(r) are even, if one were to

examine them not only for positive but also for negative values of

the argument r). Then, disregarding in expansion (95) terms of the

highest order of smallness, in region nf contact we will have

(r) + a (r) - (~ .) (0)+ 1,(2f) (a) 2-,

or

-I, () + z (P) - Arlo, (109)

r
if one were to introduce designation

A-~ . (0) + z,' (2R) (0,110)
(2a)t Is

Substituting (109) into (92), we find:

Let us introduce the designation

C, (112

c*. iu2t+Iipdjeu. sia2fld(C031?)-a

I Xa Si2-?C3?d i2qcos~

w313

10I2 t2

%2n 8 in2n?d-?2n 5 in 2"+1? d?,2nc..--2ne.,
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whence

43 - - a (113)

Assuming in (113) n - 1 instead of n, we obtain

2n-1 ., = " ,-,.( 114 )

Substituting (114) into (113), we find

". f2n-2)

' -2M 1.) (115)

Expressing in (115) cn 2 in terms of c on the basis of the

general relation (113), we obtain

(0; (T ) - )

Continuing the indicated process, we will arrive at formula

2n (2n-2) (2n-4)... 4.2 (116)(:: + 1 +) (2n- 1) (2n -3)... .5 o 1 6

Assuming in (112) n = 0, we find

0,C sin 9dq a-. (117)

Substituting (117) into (3.16), we obtain

2. .4 6...(2.-2)2n (118)e = 3. -7.. (;.n-1)(2A+1) *

Substituting (118) into (111), we find

2naa+' 24 ' 6 .. ('un-212n t.up(01+02),
• ,% • .. (.,,21 -21) (2n - ) 1
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whence

" 3 , .-- --- -- ---+--A*. (119)

fSubstituting (109) into (80), we find

a. 2OaN sin-'s? d? 2nAal c,, (120)
0

in accordance with designation (112). Substituting (118) into (120),

we obtain

cn2. -4. 6...t2n-4) (2n-2) a 2 1;(1 1

3.57 ... 2n(121)

Substituting (109) into (76), we will find

(r)m k2 a-2nAr" 1, aii2nd 2" (122)

Substituting (118) into (122), we obtain

F(r)m . --f-8 2 3- 7.,(:)(.i(2)n-) (2a.1 (123)

Substituting (123) into (78), we find

2.4.6 ..._(_-_)_( -2) 2n 2nA (124). . - - -

Assuming in (124) 8 = aa, we obtain

I

-.4...(2,-,)(2n-2),2n2n.4, -- "I g,-&do
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Introducing designation

I
I " ,e (126)

we will be able to give to'formula (125) the form

, *fa • 6.. .(2n-4)(2n-2) 2nAa f(1 7.P' = -:. .. I .1 " , ( 127)

By means of integration by parts we find

P.- (P- as--VoI- + - -•

I
(-2)

- - - p, (p) + (2n- 2) p,o. ()+ V

whence

P. (-£P P.-& (P) + Y I _ •(128)

Assuming in (128) n - 1 instead of n, we find

-PIP,_8 (?) + (129)

Substituting (129) into (128), we have

U 1 (2-1)2n-3)

+ (.-4) (130)
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Assuming in (128) n - 2 instead of n, we obtain

U 'Ihi--5-+-_ (131)

Substituting (131) into (130), we find

P, 4?) ur VZ [ +.- 2n-)2nt (U-11".I- 3)

i~ M :-2) (2n-4) , _(U'-2 )(2;-1.) (2a-6)., (132)

Continuing the indicated process, we arrive at the formula

+(-2) (-2(-4)

+ . + 2)(,- .6. ,

(2n- 1) (2'13).... . . +(

+) (133)

Considering in (126) n = 1, we find

W-' - -P, r,.- : (134)

Substituting (134) into (133), we obtain

2nt ,TiL + 2 - I + (U-) (2a4)') G+
(24-2)(2n-4) ...-6 (2n-2) (2n-4)...4 .2
" (201-1) (2n-3)' ... 7 (2n-3)...5. 3 -I

or

( -;=) OR-4).... 4. '+ + +
1) ) ( -3) ...s 5.3 2 -.4 ..

.....(2n- 7)(2n-5) 3,_ -7 -..(U-5) (2n-3) ---.
2n-4P .+ - .- (135)
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Substituting (135) into (127), we find

2) 4.G ... (n-2) I AY$)1+

3 5. "...(2a,. )(-3) , <r<3.-+ i 4 -$ (-2 (136)

From (119) it follows that

Ais-'n 1 3.5. 7... On-1)(2n + 1) P
%,(-.J'r 4 .6 ....(2n- 2) " (137)

Substituting (137) into (136), we obtain

2.4.6... (2n-fi)(2 -2)2,- l .

+ ") 3.23.0... - +, - 5,( - 7.l.(2n-7 (2- ) +

3. 5. 5 ... (ti-S) (2n-3) ]I, P(2 ...(M-4) (2n-2) ]0 1/'-(L) W,, 0o<,< a. (138)

Thus, formula (119) determines the radius of the region of

contact a; after constant a is found formula (121) will enable us

to calculate the approach of bodies with compression a, and
formula (138) determines pressure p in the region of contact.

Pressure p changes depending upon the distance to the initial point

of contact according to the same law as that in the corresponding

two-dimensional contact problem (see formula (46) and Fig. 9 of
Chapter II).

Until now we assumed that the point of the initial contact of

the compressible bodies is the regular point of surfaces of both

bodies. Let us now turn to the consideration of the case when for

the surface of one of the compressible bodies or for surfaces of

both bodies subjected to compression the point of initial contact

is a singular point.
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Let us examine first the case when the point of initial contact

of compressible bodies is the corner point of the axial section of

the surface of one of the bodies subjected to compression (Fig. 43).

If the tangent to the generatrix of this surface in the corner point

forms with axis z angle y, then, as can be seen from Fig. 43,

disregarding smalls of higher orders, in the neighborhood of the

origin of the coordinates we will have

Z (r) + z (r) - r ctg 1. (139)

Substituting (139) in (92), we find

21 CtgT 7 sin' 4pd? x nYP (0, +8,,

U

or, since

[ .-a' ctg y r P (0, + 0)

whence

1/2P (0, + 0,) tg y. (140)

Substituting (139) into (80), we find

Sa ctgY .  (141)

Substituting (139) into (76), we obtain

F (--rctgT). (142)
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00 Fig. 43.5, r.*' , S

Substituting (142) into (78), we find

__ t_____ da Sm?-

--1y I (1)43)

From (140) it follows that

C' T 2P05-08 - '" (1)44)

Substitutirg (144) into (143), we find

In 0<,<. (145)

In the examined case again we obtain the same dependence of

pressure p on distance up to the initial point of contact, as that

in the corresponding two-dimensional contact problem (see formula

(107) and Fig. 12a of Chapter II). Pressure p(r) increases without

limit when distance r up to the initial point of contact approaches

zero.

In conclusion of this section let us examine the case when

axial sections of surfaces of compressible bodies have at the point

of initial contact a continuously revolving tangent, but the curvature

of one or both indicAted sections at this point is infinitely great.

We restric*; ourselves to an examination of the example in which the

initial di.stance between the points touching with compression

Z! + Z2 can be represented in the neighborhood of the origin of

coordinate3 by the relation
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ztJ) +za(,) w 'I,, O<r<a. (146)

Substituting (146) into (91), we find

@ ---~d M- (147)

Assuming in (147) a = at, we obtain

-arm .(~44) (148)

Substituting (146) into (79), we find

am -Aa -l~

7 1/ ;de

or, assuming a - at,

a AalT. (149)

Definite integrals entering into formulas (148) and (149)

are elliptic, and after reduction to canonical form they can be

calculated with the help of tables for elliptic integrals. Their

values are such'

T 0.71 18 (150)

Substituting (150) into (148) and (149), we will obtain the final

formulas

'See Appendix 1, formulas (1) and (14).

"I
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I

r Q ( t  (151)

'JsAa'. (152)

Substituting (146) into (75), we find

P

F~r~ ti~s+0)(153)

Considering in (153) a = rt, we obtain

2 
. ,

or, according to (150),

F "r) ,-- 3 ,2 (154)

Substituting (154) into (78), we find

• J,A A .;4z
p( = -  0 < O<a.*.(,+o I -u- (i155 )

Assuming in (155) a = rt, we obtain

9JtOj *I, }i+?i_) 0<a. (156)

Introducing designation

(t ,V * o<'<Z (157)

we will be able to give to formula (156) the form
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From relation (151) it follows that

A P159)

Substituting (159) into (158) and assuming according to (150) A--O6k
ist

we find

p

p<r<a. (160)

The definite integral, which enters into formula (157) and

determines function f(p), is elliptic and after reduction to

canonical form can be calculated as a function of variable limit p

with the help of tables for elliptic integrals'. As calculations

show, dependences of pressure p on distance r to the initial point

of contact, determined by formula (160), is the same as that for the

corresponding two-dimensional contact problem examined by us in

Chapter II (see Fig. 11). Pressure p remains limited in the whole

region of contact; however, derivative dp/dr increases without

limit according to the absolute value when r approaches zero.

§ 3. Pressure of a Round Cylindrical Stamp on an
Elastic Half-Space

The problem about the pressure of a rigid stamp on an elastic

half-space, which is the subject of this section, differs from the

contact problems examined in the preceding section by the fact that

in this problem the region of contact is predetermined by the shape

of the stamp. Tf one were to designate a as the radius of the base

of the stamp (Fig. 44), the region of contact of the stamp with the

elastic medium will always be a circle of radius a, independently of

what force is pressing the stamp to the elastic half-space.

The initial distance between points of the compressible bodies,

which touch with compression, which we dep'ignated in § 2 by zI + z.,

1SeA Appendix 1, p. 7.
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Fig. 4

will in the examined problem be equal to zero in the whole region of

contact:

Sus+ ti g, < r < a. (o161a)

Substituting (161) into (75), we obtain

O<r<a. (162)

Substitutirg (162) into (74), we find

(r) 0 ,(< +D , _,, r <,a. (163)

Substituting (163) into condition (82), we obtain

a

Us ! r dr" , p?

or, since

a
P' dr'

2a2to 0,) 

The obtained relation determines the approximation

(  + 2 (164)2a

Substituting (1614) into (163), we find
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~~p(r)=o,5 - -

O<r<a. (165)

We obtained the same dependence of pressure p on .distance r up to

the axis of the stamp, which in the corresponding two-dimensional

contact problem (see formula (116) and Fig. 13 of Chapter II). On

the boundary of the base of the stamp (when r = a), according to the

formula (165), an infinitely large pressure p appears.

In order to obtain a picture of the distribution of pressure

undA- the stamp close to the real one, just as in Chapter II, we

will assume that the edge of the stamp has limited curvature even

though it is large (Fig. 45).

K i Fig. 45.

If by b we designate the radius of the circle, in the region of

which initial contact of the stamp is carried out with the elastic

half-space, then with compression the radius of the region of contact

a will take a value somewhat exceeding its initial value b.

For the initial distance zI + Z2 between points touching upon

compression will have the expression

z (r)+,(r)-O, O<r<b, } (166)
t (l+,()=.~r-b",b<r< a,

if smalls of higher orders are disregarded.

Substituting (166) into (91), we find
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Assuming a =a cos 0, we have

Mal' [a~en..-i~.-.?+.i2. (168)

where

b
-.are co. (169)

Accoruing to (169)

alw .(170)
CS ?e

Substituting (170) into (168), we find

(a b) d o.

3ec' ?.[sin ?.(6-2il 2 ?*-3cos' ?.)-3?.cosp~jw3

see ?e%. (3 -in ?.+ sin' ?.-3?. cot?) (171)

Substituting (171) into (167), we obtain the equation

see (3sin ?,+ 37.cop ?. so IP (b + 0,)(1 2

which deternines angle %.Having, f'm)urd we find by formula

(170) the radius of the region of contact a.



Substituting (166) into (79), we find

a

am 2Aa b 5- $

or, assuming a = a cos 0,

a=2Aa (a oos 9- b) d? 2Aa (a sin ?,- bgJ. (173)

Substituting (170) into (173), we obtain

CL a 2AV' see 9. ft go .- go). ( 174 )

Having found angle 0 from equation (172), we find by formula (174),
the approach a.

Substituting (166) into (75), we find

F (r) 21 (8+ . when O<r<b,zi,- -I+ O
P( -2Ar !v.- do) when bK<r<a,

or, since

S -b d3 ,w--s-+barco ,

-6-b arc Cos-

F(.)- (O,,+i when O<r<b)

( , T* 8,) ( I)
when b<r<a. J

Fulfilling in (175) differentiations with respect to r, we find
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f'(,)O when O<r<b,
j (,) a - - A (2,F b-borc ) ,(176)

when b<P<a.

Substituting (176) into (78), we find

G do

IA -_-r-' - d

when 0<r<b, (177)

() 2A b& CS do')(o, o) I *a, )i7 :
when b<r<a, J

Assuming in (177)

b
8m-cost

we obtain

S(r) -24- (2 9?-?) t r d? when O< r< b,
/ 1. (178)

2Ab (2tq'?-?)~d hnbpa

bb

since according to (169) arc cos

Introducing the designation

.)S (2tgq-V)tzd? when O<z<i,

9 , ( 7j

() t2-9)t- 7 dwhen I <:< --
arc Cos-

we will Le at 1, to give tc, formul-i (178) the form



lI

From (172) we find

2Ab 3 coi. (181/

1 Substituting (181) into (180), we obtain

I c s' y, ,d) .- ,o,.()'\P <<o ~2
-I <'r<G. (182)

j Formula (182) Jointly with relations (179) determines the

distribution of pressure in the region of contact. Figure 46 shows

graphs of pressure p(r), which correspond to different values of

ratio k = a/b, i.e., different values of angle 0 appearirm in

formulas (182) and (179). Calculation of definite integrals appearing

in formulas (179) was produced by the approximate Simpson formula.

-Jb
* -, -OJb 0 .

Fig. 46.
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II

C H A P T E R IV

GENERAL CASE OF THE CONTACT PROBLEM

§ 1. Potential of the Elliptic Disk

As we already saw above, the two-dimensional and axisymmetrical

contact problems of the theory of elasticity lead to equations

for which it is possible to plot general solutions in closed form.

In the absence of radial symmetry three-dimensional contact problem

of the theory of elasticity proves to be incomparably more complicated.

Those solutions of it which we discuss in this book are based on

certain properties of the potential of the elliptic disk, to the

examination of which we now turn.

Let us construct a system of rectangular coordinates, x, y, z,

combining plane xOy with the plane of the elliptic disk (Fig. 47).
Then, according to determination of the Newtonian potential, potential

V kx, y, z) of the elliptic disk at point A with coordinates x, y, z

will be equal to

V (XI) Z

where p(x', y') - density at point A' with coordinates x', y', 0,

R - distance between points A and A', E - region of integration

constitutirqg th( part of plane xOy occupied by the elliptic disk.



i

Fig. 47.

In particular, if point A lies on the surface of the disk, then

and according to (1)

('p (z'. y,') d,' dy (2v(X, Y, 0)- j (2Y)

If semiaxes of the ellipse, which limit the elliptic disk, are

designated by a and b, then with the appropriate location of axes x

and y the equation of this ellipse will have the form

0 + 9 . 1.
Pe TS, (3)

As we show below, if density p(x', y'). has the form

P (x ' ') -n (4)

where a0 , a,, ... , an are constant coefficients, then the potential

of the elliptic disk on its surface, determined by formula (2),

is expressed by a polynomial in coordinates x and y of power 2n.

Based on this property of the potential of the elliptic disk are

solutions of contact problems discussed in subsequent sections.

Let us turn to proof of the indicated property of the potential of

the elliptic disk.
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Substituting (4) into (2), we find

'I

11(x, y, o). 2,al(Z, Y), (5)

where

MM O, 1,..,.I,n.

Let us turn in the muitiple integral (6) from rectangular

coordinates x', y' to polar coordinates R, 0 with the origin at

point A with coordinates x, y (Fig. 48). As can be seen from Fig. 48,

Z'-z+RCo(, 7)
y'=y±Rhin,j

instead of the area element dx'dy' we will have the area element

do RdRdo, and formula (6) will take the form

2, , fe . __ _- - _ , ] dR , (8 )

where R0 (C) - distance between points A and A" in Fig. 48. Since

point A" lies on the ellipse with semiaxes a and b, its coordinates

x", y" must. satisfy the relation

'too Y",(9)

At the same time, as one can see from Fig. 48,

z"= -.- 'COT I (1n )

SubstitutiLg (13) into (9), we ohtain the equation

-- R. cos ?)' + I (y + R. &in



' £ Fig. 48.

or

S(?%+ 2.M (9 -- 0,(1n)

where

,, (12)

Let us note that

N>O, (13)

since the point with coordinates x, y lies inside the ellipse.

Solving equation (11), we obtain

R.(). ,- + ( 14 )

As can be seen from (12),

L(9)>O when 04 21 (15)

In virtue of inequalities (13) and (15) we will have

+-- L > IN()I.(16)



Thus, from the two solutions of the quadratic equation (11),

determined by formula (14), one is always positive and the other
negative. In order to obtain a positive solution of equation (11),

which is of interest to us, one should take a plus sign before the

radical in formula (14). Thus, finally we find

%)17)

Formula (8) can be given the form

jp, f + V WsCos, ? +

according to designations (12), or

jm (, yi)-

:d? *. ?['II-R (?M? -I''?I- dR..

2% no WsId? I L (p) Y'( Y) L()-[.11 (?) 4.YL ()]' dR

(According to inequalitie6 (13) and (15) the subradical expression

in formula (18) is essentially positive.)

Since O<,R<R.(?), and function L(W) according to (15) is positive,

we have

, (? ) If ( 1)+.L(f) it (1)-1. (y-1 ) L ((f)
V 313 (?)+ XL ML )MS+ (?)

P~ut 3Th1. OC(ri



.1( > (20)
VM(+ x ()

and according to (17)

(21)V i/.i () + NL()

From relations (19), (20) and (21) we get

J ( + RL () (22)
--< 7, -T T+ .' (?) (2 )

and, consequently, instead of the variable of integration R it is

possible to take a new variable 0, assuming

.- (0 0< ). (23)

From (23) we find

s- in 0 A ,) = y w + .' - dR , ( 2 4a )

dR tin 00

From relations (23) and (21) it follows that

0.0 when R-R.(?). (25)

Producing in (18) replacement of the variable of integration R by 0,

according to (23), (24) and (25) we will have

IMsy~i d ~N y~~[L,+] san' 8dO, (2" "

where 0(¢) is the value which takes the variatle of integratlcm1 0,

when R = 0. From (23) wo finl



cos'.e(.7) 2LPL..

CM(s) (27)

Assuming

- + , (28)

we find

Sd 7A ) [ ]'z- ."

(t + N"] r 0 mOdO. (29)
~ 5 L Q+t

Substituting (28) into (12), we obtain

L (-. + W-L M, -if (r + --v(.( 30 )

Substituting (28) into (27) and taking into account (30), we have

cos ' (+ c -cos (,

whence

( + Y) I,- M. (31)

Substituting (30) and (31) intQ (29), we find

( '-(j)+ L( Y] n'NOdJ.

A~xiir~in )~ ~



!1

2 ie I

Eo it L (,) .I M"l'i' (33)

Using relation (33), we will be able to give to formula (26) the form

z.V)u d 7. [770 + N]bn 0d4

L~)+

xa d;SKJi. +N] 'sin--8d8+

+ d )Vb M-VT + NI sint- 0 A

+ N9ia o

where

=(( )

•. sin 0':  d8 I~ ( .. 1 _ ,

0

Substituting (12) into (34), we obtain

(XV Cos? ya' l S _ Ir3 it)": ] lin t

(zr Y)o~~-'i ?+1 ± Yt~~ 1Vt WrS(1- 6 ?f+_bc) X 1

fbt+0tya )(a$ sin' "+bO -' ? + +aaSin 9)m
o f alW ( Sin'rb'COS'T)



I,

x
alb ~ ~ ya S4lirl 4 

i
acs

or finally

([ (sin ,- Cos,) ]T ,d

(z, y) - cab [ W1-coay+ ' 1m ____________ (36)
a' L-8sin, T+b Cos, Y, irns ?+bI (36)

Substituting (36) into (5), we find

V (Z, y, O)
itst os ']mtt

Let us now turn to the calculation of coefficients c in formula

(37). Fulfilling in formula (35) partial integration, we find

siA n~ aiOd (cos0) - - sin"'-' 0cos0 1+
+(2m-1) s~~in-0 coal 0 O2ml(sam10-

whence
lm-

Assuming in (38) m I, m - 2, etc., instead of m, we obtain the

relations

' - I

C'"2.



etc. Substituting (39) into (38), we find

,-(41

Substituting (40) into (41), we obtain

. - )(2m- "1) (2,,t- )(42)
V _ - (2m 4

Continuing this process, we arrive at the formula

(2n6 - 1) (2;n - 3)...3- 1

cm 2 2m-2)...A.2 €'"(43)

Setting m = 0 in (35) we find

dO . - (44)
0

Substituting (44) into (43), we obtain

1.3.5...(2m-3)(2#n -) (,2,)2,, T-7. .(2M -2) 2,M= ~ ,2..(5

Substituting (44) and (45) into (37), ke find

V (2, y, O) T, ab a,'l + 1..-5 ... (:in- 3)1(2m -t)_a X

• 2.4.6...(2m- 2) 2m

X (-- - i', i' @+ 'C+,'? X col dsiI ,+ c, (46 )

Thus, the potential of the elliptic disk is expressed on the

surface of this disk by formula (46), if density p is expressed by

formula (4). Expression (46) obtained by us for the unknc'+rn

potential indeed represents with respect to variables x and y the

polynomial of the 2n power, which was required to be shown.
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§ 2. Pressure of the Elliptic Stamp on the
Elastic Half-Space

In Chapter III we examined the problem on the pressure of the

circular cy-indrical stamp on the elastic half-space. In this

chapter we examine the problem on the pressure on the elastic

half-space of a rigid cylindrical stamp with elliptic cross section.

Let us designate by a and b (let us agree that a K b) the

semiaxes of the ellipse limiting the base of the stamp, and let us

plot the sy:;tem of rectangular coordinates x, y, 7 in such a way

that the equation of the curve limiting the region of contact

of the stamp with the half-space has the form

Xt VS

+ , Z.O.

and that the elastic half-space covers the negative semiaxis z

(Fig. 49). Let us designate further by p(x, y) the normal pressure

appearing under the stamp at the point with coordinates x, y (the

base of the stamp will be considered ideally smooth). Under the

action of tie mentioned pressure the point of the surface of the

elastic half-space with coordinates x, y should accomplish an elastic

displacement with projection u on axis z equal to (see formula (69)

in Chapter III)

p y,',') dz' dy'Ila= V- I _ +(y . .  (47)

where 0.7--, E- elastic modulus, 1 - Poisson's ratio of the elastic

;nedium, Z - region in which pressure p(x, y) acts, in our case the

region limito-d by the ellipse

I+ tL' . r

Let uJ ieoicnate further by a the forward displacement which

the stamp a, oomplishes in the directlon of the negative sfmiaxi.; z



J*

Fig. 49.

with compression. Each point of the elastic half-space found in

contact with the stamp should with compression undergo elastic

displacement in the direction of the negative semiaxis z equal to

a, i.e., in the whole region of contact the condition

IIt

should be fulfilled. By comparing relations (47) and (48), we find

that in the region of contact the condition

1 2 
, ( z ' , ' ) d z' ' a

T- (49)

should be fulfilled. The expression standing in the left side of

relation (49) at the point with coordinates x, y, 0 determines

the potential V(x, y, 0) of the elliptic disk with density p (see

formula (2)), and in the right side of equality (49) there is the

constant ratio j.

Thus, the problem of detecting pressure p under the stamp is

equivalent to the detecting of that density p at which the potential

of elliptic disk maintains a constant value on its surface. In the

preceding section we showed that if density p is determined by

formula (4), the potential of the disk V(x, y, 0) is determined by

formula (46), constitutes a polynomial of the 2n power with respect

to variables x and y and, in particular, with n = 0 maintains the

constant value. Assuming in (4) and (46) n = 0 we find

P(_,_ '- ° (50)

P/ 1--- L'39 ' '
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V (x y. 0) iabal d? (51)

Thus, if for pressure p(x's Y') we take the expression (50), then

the multiple integral standing in the left side of relation (49),

will maintain the constant value determined by formula (51). Thus,

in order that in the region of contact condition (49) be fulfilled,

it is sufficient that this constant value be equal to s. Hence

we obtain the relation

naba. V ? y - (52)

which connects coefficient a0, appearing in expression (50) obtained

for pressure p, and the approach of the stamp with the elastic

medium a.

Let us designate by P the force pressing the stamp to the

elastic half-space. This force should be balanced by the reaction

of the elastic half-space. Consequently, integrating pressure p

with respect to the whole region of contact, we should obtain force P:

p (z'.y') ddy# M P. (53)

Substituting (50) into (53), we obtain the relation

Sdz dy P (54)

Formulas (54) and (52) determine the constant a0 and approach a.

In order to calculate the multiple integral entering into formula

(54), let us cross over to it from the rectangular coordinates x',

y' to polar coordinates r, 0, assuming

z' rcos, y'-rSiD 7.
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Let us find

(' dzdyOf 2:9 d? or) ,de (5)

The limit of integration rcO(4) is determined by the condition that

the point with rectangular coordinates

Z'a:TC0. cl? y'm- ?*sia y,

should lie on the ellipse

@+b 8 "'

Hence

, 3 + A)-mt. (56)

Fulfilling in (55) integration with respect to r and taking

into consideration relation (56), we find

ks (C,: + vjI> rtc) d

. i  I"P. ,cs
a''I',-t&'co'I'(57)

since in the last definite integral the integrand has the period TF.
Assuming further ?m:-. we find

22
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whence

Osin -- +b costo ;r 4C-0 -#S 1=

2 /

=2 Sa (58)

Let us introduce in the last definite integral instead of the

variable of integration 0 the new variable of integration t, setting

b

Let us find

_ _ dec',dy d(tg,) .
as dfino p + bCOP' ? 3 at- .+6 3 t.2 y+bOu 0

1C di I *O
I e oaretgt -- (59)

Substituting (59) into (58), we obtain

S a.t,,-s' T , " (60)

Substituting (60) into (57), we find

dz a'dy _-- , 2n A (61)

-V.y a' Li'

Using formula (61), we obtain from relation (54) the value of the

constant aO :

P

(62)
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Substituting (62) into (50), we find the final expression for

pressure p(x, y) in the region of contact

IP P (X, Y,)= .f (63)
7,.tF--z-s

Substituting (62) into (52), let us determine the displacement

of the stamp with compression a:

. gT. ( 64 )

Formula (64) can be given the form
U S.

2 '
_______ ,(65)

where

e= v (66)

is the eccentricity of the ellipse (we agreed that a < b). Since

the integrand in (65) remains constant with replacement of * by

-. 2 - ,

and formula (65) can be given the form

a= V it  67)

As we already repeatedly noted, the definite integral
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X

F(x, k) -" (68)

is called the elliptical integral of the first kind with modulus k.

In the case when the upper limit x is equal to unity, the elliptic

integral is called complete, and we denote

F(1, k)- K.(k). (68')

Setting siAn=-,

ds ~dz

dy 1 (69)

Formula (67) can be thus given the form

Kb (70)

a-a Kr|e--..

Displacement of the stamp with compression a is expressed in terms

of the complete elliptic integral of the first kind with the modulus

equal to the eccentricity of the ellipse limiting the base of the

stamp.

Formulas (63) and (70) completely solve the contact problem

examined in this chapter by determining the pressure under the stamp

p(x, y) and approach of the stamp with the elastic medium a. As can

be seen from formula (63), when the point with coordinates x, y

approaches toward the ellipse, which llmits the base of stamp, the

denominator in the expression determining pressure p(x, y) approaches

zero, and pressure p(x, y) increases without limit. In the contact

problem examined by us the section of the stamp by a plane passing

through the z axis has at the base of the stamp right angles (see

Fig. 49). In reality for any real stamp such a section will have at

the base of the stamp a large but limited curvature. In this case

althougn pressure p(x, y) can reach at edges of the base of the stamp
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great values, nevertheless it remains limited in the whole region of

contact. By examining the two-dimensional and axisymmetrical contact

problems, we examined this question in detail. In the absence of

radial symmetry this question in the three-dimensional contact

problem leads, unfortunately, to great mathematical difficulties,

and we do not discuss it in greater detail.

§ 3. Compression of Two Elastic Bodies Initially
Touching at a Point

In Chapter III we examined the problem on the compression of

two elastic bodies initially touching at a point for that case when

both compressible bodies have a common axis of radial symmetry. In

this chapter we examine the general case of this problem, assuming

that the compressible bodies have an arbitrary configuration.

Let us construct a system of rectangular coordinates x, y, z,

disposing the origin of the coordinates at the point of initial

contact of compressible bodies and combining the plane xOy with the

common tangent plane to surfaces of compressible bodies at the point

of their contact (Fig. 50). Let us assume that

z=/(0'), } (71)
z= - (x, Y)

are equations of surfaces limiting the compressible bodies. Let us

assume that, further, A1 and A2 are two points of these surfaces

touching with compression; AlB1 and A2B2 - elastic displacements of

these points (see Fig. 50). Points B1 and B2 are combined with

compression due to forward displacements of the compressible bodies

causing the approach of them, which we will designate by a. We

will subsequently assume that resultants of compressing forces lie

on the z axis, and the indicated approach of the compressible bodies

with compression is carried out along the z axis. Under these

assumptions segment BIB 2 on Fig. 50 should be parallel to the z axis.

Let us designate by zI and z2 coordinates z of points A1 and A2.
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Fig. 50.j

0 C

Then the z coordinates of points B1 and B2 will be equal to zI + Ulz

and :,+u,, where ulz and u are projections of elastic displacements

of points A1 and A2 on the z axis. The distance between points B1

and B2 thus equal to z + U - (z2 + u2 ). On the other hand, this

same distance is equal to the approach of the compressible bodies a.

Consequently, for every pair of points touching with compression,

we should observe the condition

,+3. -(z + US) (72)

Let us designate, further, by x, y the corresponding coordinates of

points B1 and B In view of the smallness of elastic displacements

it is possible approximately to assume that

, (=Y), Z' --s,(X, )A (73)

in accordance with equations of surfaces of compressible bodies (71).

Substituting (73) into (72), we obtain

S - , ( y). (74)

Let us designate, further, by E the projection of the region of

contact on plane xOy and by p(x, y) the normal pressure at the point

of contact with coordinates x, y. We will consider subsequently

surfaces of compressible bodies to be perfectly smooth and assume

the displacement u 2z approximately equal to that displacement which

is accomplished in the direction of the z axis the point of elastic
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half-space z < 0 with coordinates x, y, 0 under the effect of normal

pressure p(x, y) effective in region E. Then

US: 1 _LCI-Y 0 dz'd'(75)

(see formula (47)), where ,elastic modulus, ii -Poisson

coefficient for the second of the compressible bodies.

Under similar assumptions we will have

ap (:'. y') dz' j (76)!~~ ~ -,=O zI(-')' + (y -3

II

where O, .t-Pj,, E,_ elastic modulus, and i' - Poisson coefficient for

the first of the compressible bodies.

Substituting (75) and (76) into (74), let us find that in region

E there should be fulfilled the condition

(:_ ~0' =,,(jo, %b, A (77)
I/+* (z- ', 0 y)

Since according to condition the origin of the coordinates is the

regular point for surfaces of compressible bodies, functions fl(x, y)

and f2 (x, y) in equations of these surfaces (71) can be expanded

in power series in neighborhood of the origin of coordinates

I1,(z,y)=a,+a,+,y+U +al,zy+a,,y+.., (78)
1,(z, y)=b,+ , +by+y+ bax' +b,,y+b.y' + ... (7

Since surfaces of compressible bodies pass through the origin of

the coordinates and planes xOy touch, we will have

a. = aa, = b. = b, = ba = 0. (79)

Taking into account (79), we find from (78)
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h (x, Y) + , (z, Y)4 (as, + b,,) X +
+(a,. (80)

The direction of coordinate axes x and y have thus far been left

arbitrary. Let us now orient these coordinate axes in such a way

so that in the expansion of (80) the coefficient at xy turns into

zero and inequality ac t>a +,l,, takes place, i.e., so that conditions

a,, +b1,O0, a1  +b,,>a,,+bS1. (81)

were fulfilled. We will assume that here not one of coefficients

a1 1 + b and a2 2 + b22 turns into zero. Then, if we disregard in

the expansion of (80) smalls of higher orders (proceeding from the

smallness of the region of contact) in region E we will have

I, (, Y)+I, (x, Y) - (a,,+b,,)X'+(a,, +b,) y'. (82)

Subztituting (82) into (77), let us find that in region E condition

p - Az- y) (83)

should be fulfilled where

A-aa,+b,,, B=a,,+, (A>B). (84)

Integrating the pressure p(x'y') with respect to region E, we should

obtain the resVLtant of external cor pressing forces acting on each

c:f the compressible bodies. Designating this resultant by P, we

w1il obtain the condition

SSp (x', y') dz' dX,( P. (85)

, #.r to solve the examined contact problem, it is necessary

S* r.. S, pressure p(x, y) and approach a by proceeding

__-__ and



The expression standing in the left side of relation (83)

detormines at the point with coordinates x, y, 0 the potential

of the disk with density p, which cover in plane xOy the region Z.

In the right side of relation (84) there is a polynomial of the

second power in x and y. As we showed in § 1, if the disk is limited

by the ellipse

i+- (86)

and density p is determined by formula (4), the potential of disk

V(x, y, 0) is a polynomial of the 2n power with respect to variables

x and y determined by formula (46). Assuming in formulas (4) and
(46) n = 1, we find that the integral standing in the left side of

relation (84) will be in region Z equal to

SZ (z.2v y') ds'dy'

, l,.. (lsin -i'co 1~, * - (87)

78:5 jfl ?2  1 ts? a ssin' ,+68cr

if as region E we take the part of plane xOy limited by ellipse

(86), and for pressure p(x', y') we take expression

p( ,y) a, Ii---s-- a (88)

Coefficient a0 in formulas (4) and (46) were taken equal to zero in

order for pressure p(x', y') to obtain the expression limited in

the whole region Z.

Relation (87) can be given the form

S p (', y)--y+ lzy- , (89)

where



2 (0Yg .Sills + ba ?(90)

J& - 2% abal 21 V5 (91)"( shl ?( s,, +b'cO )', ( 1

J, - aba, si os9d (92)
(all sin, ? + b, Cos- ' ( 93 )

aba cos'd?:,-. tt: Sin •~CstN (93)

As we already showed in the preceding chapter,

2 K (94)

(compare formulas (64) and (70)), where

too -- (95)

is the eccentricity of the ellipse limiting the region E (on the

assumption that a < b,

K(e) - d C96)

is the total elliptic integral of the first kind with modulus e.

Substituting (94) into (90), we find

J.= ,raa, K e). C97)

Formula (91) can be given the form

J = aba, in I ? ,| d7 , w4j uin'?d,
o - 'a') sihII" 2.' *(t -,'|'--O

?a

Wbe' 3J'~1

%12 %12

VK! dpd- (98)
be 8 (1 t 6i n % S~int? IDI



since in these definite integrals the integrand remains constant with

replacement of * by r - *. In order to convert formula (98), let us

use the identity

4 f lafo 1,) 1 l -2sif'y C$1s ' (t-sin'P) "+
! -2 sii~+n'?J l ~4 ,-.I +(I-'- so )

.. m 80 ,t(f- #;l Q m?) .

(I" .. ... ."" 99
a.)/we'' 1*

1  (99)

Integrating both sides of identity (99) with respect to * within
limits of 0 to w/2, we find

f

whence

;l. "y • I

( - l C' ull)'J' V/ -. 'i'?. (100)

The definite integral appearing in the right side of formula (100)

is called the total elliptic integral of the second kind with modulus

e and is designated by E(e): Vt t
£(C) S 'jrt - _0 sp dyp. (101)

Thus, formula (100) can be given the form

d .(e) (102)

According to (96) and (102) formula (98) can be presented in

the form
is, [E" (e) - 0 e') K ()]
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or according to (95)

J. $ [E (e) (t --e')K(). (103)

Let us turn to the calculation of the definite integral J2 (ee

formula (92)). Let us find

On ycos d y j=O
,,,', + , CoT, 'a)" (b, - a,) Y -W R 0,-1

whence

A,-0. (104)

From formulas (91) and (93) we find

+ aa, d,
4* (a-,' ,no,'t + , + ' t- ,, cos 2 S ( s ) is

according to (102), or

1, + I, - B (e) (105)

in accordance with (95). Substituting value Jl from (103) into (105)

we find

.i J OE'E (c)-E (c) + (I-es)K (e)],

or finally:

i -' s -°'){(e)-E(e)l. (106)

Substituting (97), (103), (104) and (106) into (89), we find
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PZ," y _ (e). 7 [B (e) (i-.')K(,)Jz'-JJV - -=.'.,,, r~,aK e ----

(107)

Thus, if for pressure p(x', y') we take expression (sic) the

multiple integral standing in the left side of relation (sic) will

be determined by formula (107). So that here condition (83) is

fulfilled, it is sufficient that the polynomials standing in right
sides of relations (83) and (107) would be identically equal to
each other. Comparing the coefficients of these polynomials with

each other, we will obtain the conditions

,gaa,~t)---!-,(108)

A
([ _() ()- i(s) -+It , (11o9)

(110)

Substituting (88) into (85), we obtain the additional condition

115.. /I" "zadxy'MP. (111)

In order to calculate the multiple integral entering into formula

(Ill) let us turn in it from the rectangular coordinates x', y' to

polar coordinates r, *, assuming

Z --TCO5 , 39/mrlifly.

Let us find

amdj 1 cf?+Fnr r 12
o 0

where the limit of integration r0(o) is determined by condition

-- -- - (113)
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Fulfilling in (112) integration with respect to r and taking into

account relation (113), we find

L" V i 4

since in the last definite integral the integrand has the period W.

Substituting (60) into (114), we obtain

£ 1----bdx'dy' f,,ab. (115)

Substituting (115) into (111), we find

3P (116)

Thus, we obtained four relations (108), (109), (110) and (116)

for the determination of semiaxes of ellipse a and b, approach a and

constant a., which enters into formula (88) for pressure p.

From relations (109) and (110) we find

B(e)-(I-e1) K(e) A
(t - ')EK.() -.. e .)J" '

or:

= (117)

Equation (117) determines the eccentricity of the ellipse e according

to the assigned ratio B/A. Let us note that ratio B/A and, conse-

quently, the eccentricity of ellipse limiting the region of contact,
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are determined only by the configuration of comrrpessible bodies

(see formulas (84) and (80)). Figure 51 shows the dependence of

eccentricity e with respect to ratio B/A (let us remember that ratio

B/A does not exceed unity).

U

Fig. 51.

I A

Substituting (116) into (110) and replacing in (110) the

difference 1 - e2 by the ratio a2/b 2 , we find

lip B

or according to (117)

IPE (e) A+8 .-. -,,(.n18)

whence

S- .(119)

Detecting from equation (117) the eccentricity e, by formula

(119) we find the semimajor axis of ellipse b. Knowing the semimajor

axis of ellipse b and its eccentricity e, let us find tb semiminor

axis of ellipse a by formula

a_-. b T-P. (120)
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Substituting (116) into (88), we obtain the final formula for pressure

p(x-, y) in the region of contact

ia (121)

Substituting (116) into (108), we obtain the formula for the approach

a

(1 6( ) P, (122)

Formulas (117), (119), (120) (121) and (122) completely solve the

examined contact problem of the theory of elasticity, successively

determining the configuration of the region of contact, pressure in

the region of contact and approach of compressible bodies with

compression.

With B = A, i.e., in the case when the initial distance between

points touching with compression, according to formulas (82) and

(84) are equal to

h(zy)+l,(x,y)=Ar' (,- 1T7), (123)

the eccentricity e of the ellipse, which limits the region of contact,

is equal to zero according to graph 51. In this case b = a, and the

region of contact turns into a circle of radius a. When e = 0, as

one can see from formulas (96) and (101),

K(e) -(e)ff-. (124)

According to (124) formulas (119), (121) and (122) take the form

a = . C .1 D (125)

11x , y), .,(126)P (X, Y) ____;

- ,(127)
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and we arrive at the solution of the axisymmetrical contact problem

of the theory of elasticity, obtained by us earlier in Chapter III.

The account we have given in this section of the solution of the

contact problem belongs to Hertz'. In this solution an important

fact is the assumption that in the expansion of (80) in the selection

of the direction of coordinate axes x and y corresponding to

conditions (81), not one of the coefficients a11 + b = A and

a22 + b22 = B turns into zero. Actually, otherwise for the initial

distance between points of the elastic bodies touching with compres-

sion, we would not have the right to take as the first approximation

the expression (82). The special case when one of the coefficients

A and B is equal to zero or both these coefficients are equal to zero

was not examined by Hertz. For the case of radial symmetry we

indicated complete solution of the problem on the compression of

elastic bodies initially touching at a point regular for surfaces

of both compressible bodies, not imposing any additional limitations

on the configuration of these surfaces in the neighborhood of the

point of initial contact. In the absence of radial symmetry such a

complete solution of the contact problem of the theory of elasticity

is associated with great mathematical difficulties. However, leaning

on the property of the potential of the elliptic disk, indicated by

us in § 1 of this chapter, it is possible to supplement the solution

of Hertz by a number of other particular solutions of the contact

problem of the theory of elasticity.

Let us consider the case when the expansion of (80) starts from

the uniform polynomial of the fourth power, which takes with

proper selection of the direction of coordinate axes x and y the form

Az'+Bx'y'+Cy' (A > C).

Then, disregarding, due to tne smallness of the region of

contact, smalls of higher orders, in region E we will have

'Hertz H., Gesammelte Werke, Vol. 1, Leipzig, 1895, p. 195.
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!,=,)+,(, =,x. '.y+c,(A>c)," (128)

and condition (77) will take the form

p (z', y')dx'dy M (129)
5 41( --") - ) ,+0, 

1

If as region E we take again the part of plane xOy limited by

the ellipse

Z2 ys '

the multiple integral standing in the left side of relation (129)

will represent the potential of the elliptic disk V(x, y, 0) with

density p(x', y'). According to the formula (4) and (46), if for

pressure p(x', y') we take the expression

+a. (130)

this multiple integral will equal

(z sin a, - ycosI)'- d;

+I,,yAy a,____ a' sins ? + ' COS f J Jy si + b'cos'

i t 3 (z sin y jcos f)'=,rab as ,+ a,--- " a, . ,

3 (xsin -, cos,)' 1 - (131)

In order that the polynomial in x and y in the right side of relation

(131) is identically equal to the polynomial appearing in the right

side of condition (129), it is necessary that

1 3 _

a, +, a,-O,
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whence

2
az ---- . (132)

Substituting (132) into (130) and (131), we find that when

p(,,)-m~Q ,/j- -- 1"r3 . ' ,

0' b 0- at- , (133)

P 2.y xd 'a a (Z~il-f -coS ' 1 x

x '-m aba, I i- 194yi 2 c5

..y. sin'y cost ' 4-z- sin # cao Cosa. + (134)
( s ol n' + b' C o 1)' ) , si, " I + b cost "

We find, further, by replacing 0 by w -

U s ir ? 'Cos 7di
(unt+ V cost V)/*'

- 4 Sissi h3oOc1, -i + (4 sin -1 O21
ul2 12

Sint' +cov Od - sint+'jos ' d+ 0 (135)
* (a, lt o,( lint b1cot +6-

and analogously

s.in os.' d? 0. (136)

(a% sin' +b costI ,.36
0#

According to (135) and (136) relation (134) takes the form

* 4
p(z, y') dz')dy'

ri.(a' ginfl+ ?X' +Sif,'COS', ?a . I

_ba 1 60 1 +(a'ylin'+? cos2 y)CS4 V X
Ux

x 1?
*~ Fl- Is -A)'
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whore , - --- the eccentricity of ,the ellips. Sine 6 in the

obtained definite integral the integrand remains constant with

replacement of .b$ w - *, relation (137..) can be given the form

(:e . _ j +. e , .t . x+.t i , .

X (138)

Let us introduce the designation

(~)m~T~i~Sy.(139)

We find

- z sin + 61'e'? (6-aa' ) +y' (cost s000 ui "

- + -W (2 ) ' + ,-.,-. z ' :..

-. - [ey ,.6ezy,- 2e,', + k., 6z' ,i + g,_ -

( z - 2ey + 2z - i ,', + ,)A,+ (z' - $z'y' + V) '] ",

+ (I-e )y] ,. I. + W, U, + V,) 11. 0:40)

Substituting (i40') into (138). we obtaih

p ~ ~ ~ {be -;;Vz'?1 ra + exy yi AL4

it

z -(141)

According to the formulas (.96) and C102)

d2o- to (142)
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In order to convert the third integral of integrals entering into
formula (141), let us use identity

1= "+a 0 1- a s 4 6 , +, .

(1143)

Integrating both sides of identity (143) with respect to * within
limits of zero to w/2, we find

0'D. -i4+2z2-#qT\ Tj 3 (1 1

whence

l . - /2 sit

2-c "Ee (-et)K_ - (144)

according to (142)

Substituting (112) and (144) into. (141), we find

P( W."V, z) 'dV Iwo) ( --' s' + -- ) X)

- li- 6( { .-e) z',y'+(1 -.-e)' y'] I2 (2-c') B (e)--(1-e,) K (c)I)
"- 'be( {i,3t¢(1 -,"'K (,.)+ [-3(1-c')'K(e)+,

12,',,'GO (I' - '

+G (t -e') B ()- (2 - ') Ec) + (i-') K ) ] z,'+
+6[3 (1 -c')'X" (e) - 3 (-,,,) (1 -e') E (c)+2 (2 - ') (1 -e ')Be)--(1-e)X(1) ] z'i' -3(1-)' A (e)+fl (1-c t )' £ ()-

--.2(2--..e) (1 --e )*E(e) + ( -e')' K'{e) I ii') 6-b ,,,{ eg~' X-

x {6',' (t-e)'K" (c)+[-(1-c') (2 -c 2)A (e)+2 (i-2--) £ (e)J z' ++ 6 (1 -) [2 ( - el) K (e) -(2- e') K (e) +1.
+(2-e)' -( + C') + (I) l+) )'. (1C4 5y)
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Thus, if for pressure p(x', y') we take expression (133), then

multiple integral standing in the left side of condition (129) will

be determined by formula (145). So that in this case condition (129)

is fulfilled, it is sufficient that polynomials standing in right

sides of relations (129) and (145) be identically equal to each

other. By comparing coefficients of these two polynomials, we

obtain conditions

6 +&S (146)

_7F -(147)

((148)

1(2+e')K(?)-2(ti'E*Iup~. (1149)

Substituting (133) into (8c), we obtain an additional condition

I~ V~ 'd (150)

4X- -w y - i .)ZM P.

In turning from rectangular coordinates x'y' to polar coordinates r,

0, i.e., assuming

X' = r COS ?, -in?,

we find

( 7~~')Sd. c? + -p- 0. @"drl (151
s {'"  

,, S,8  1)

where the limit of integration r0 (0) is determined by relation

,iC012 ?+ 0:t-1, -f |. (152)
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Fulfilling in (151) integration with respect to r and taking into

account relation (152-)., we find

~(153)
- ~ ~ ~ ~ *aa 1 +0 Jr.j~~pt .VP"() 4

according to (60).

Substituting (115 and (15 into (150), we obtain

whence

W.u (1514)

Thus, in order to obtain the solution of the .examined contact

problem, we must satisfy five conditions - (146), (147), (148), (149)

and (154). At the same time at our disposal there are only four

constants, the selection of which we can arrange in order - semiaxes

of the ellipse a and b, approach a and coefficient a1 in formula

(133) for pressure p. Thus, aforementioned conditions impose a

limitation on the assigned constants appearing in the formulation of

the examined contact problem. Let us first discuss the character

of this limitation. From conditions (147), (148) and (149) we find

S,-(155)

(156)

Expressions standing in left sides of relations (155) and (156)

depend only on eccentricity e. Thus, excluding from relations (155)
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%= 156) the ecce-ntii us we-iiz Liam- Conn-eczo:6n between ratios

B/A and CIA. In order to show the character of this conneotion, let us
introduce the designation

- '.(157)

Since relations (155) and (156) expresf, the ratio B/A as a function

of ratio C/A, ratio B/A should be a certain definite function of

parameter k introduced by us. Let us present this functional

dependence in the form

/. -2k[t-()J. (158)

In the table below a number of values of function 6(k) is given:

1,1 0.8303 0,6532 0,48.3 0,24;

a ) 0 °0 0,401S 0,• 2 5

As we see, function 6(k) over a wide range of the change in

argument k obtains small values as compared to unity. Substituting

values of constants B and C from (157) and '(158) into (128), we find

b, V, Y) +/ h, y) = A j' + 2k [- (k) !,,,}. (159)

Thus, so that we could arrive at a solution of the examined

contact problem, the initial distance between points touching with

compression 1,(z.v)+I,(z. should have expression (159), where A and k

are constants subordinate to conditions

O<ks1, A>O, (160)

and in other respects are arbitrary constants.

Since quantity 6(k) is small as compared to unity, formula (159)

can be replaced by an approximate formula:
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h (z, y) +, (z, y) - A(z' + kh')'. (161)

Figure 52 shbws curves determined by equations

when k - 0.079 (in this case 6(k) ' 0.124, and the eccentricity e,

determined by equation (155), is equal to e = 0.975). The first of
these equations determines the internal curve and the second the
external curve on Fig. 52. As we see, even at values of k close to
zero, and, accordingly, with eccentricity e close to unity, we obtain

a fully satisfactory approximation, passing from the dependence

(159) to the approximate dependence (161).

Fig. 52.

Thus, whereas Hertz showed the solution of the contact problem

for the case

h (z, W +, h 4, y) - (x* + ky)%

we actually arrived at the solution of the contact problem for the

case

, , )+/=(,y A (x% + k!

Substituting (157) into (155), we obtain the equation
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- -,2( +, C -t (162)

which determines the eccentricity e of the ellipse limiting the region

of contact as a function of the assigned coefficient k. Figure 53

gives a graph of the dependence between the eccentricity e and

coefficient k.

I Fig. 53.

Substituting (154) into (147), let us obtain the relation

j Fp el) (2 - sW)K(e) - 2 (t - VI) E() 0j,

from which it follows that

A (163)

Thus, having determined from equation (162) the eccentricity e,

by formula (163) we find the semimajor axis and by formula

a .. b I/ i--- (164)

the semiminor axis of the ellipse, which limits the region of contact.

Substituting (154) into (133), let us obtain the final expression

for pressure p(x, y) in the region of contact:
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Substituting (154) into (146), we find the approach of elastic bodies

with compression a:

=-- +- ) p.,(166)

Formulas (162), (163), (164), (165) and (166) completely solve

the contact problem examined by us, successively determining the

configuration of the region of contact, pressfure in the region of

contact and approach of compressl6le bodies with compression.
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APPENDIX 1

REDUCTION OF CERTAIN ELLIPTIC INTEGRALS
TO CANONICAL FORM

1. Le& us first consider the definite integrals

1

CI3 .VI? n-o, 1, ... (1)

Assuming in (1) t = 1- x2  we have

en i7-. p iI

or

! t- z'IA*'*dz .. (2 )

Introducing designations

X,- ...... , n, O, i,'e,.,.( ),

we find

C, (X l/ x- 2X3 X,,. 4)

C,/=2i(x.-3X,+3.,-X), etc.
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Thus, the calculation of definite integralz o 

the calculation of definite integrals XA. Using Conven t

designations

___ ___ __ E(k).d

for complete elliptic integrals of the first and second kinds, we

find

I

dx

p2 -. ~ /~z

Let us use, further, the identity

2 (2n -3) x,"-' -. 3 (2m -2) z'4',+ (2n 1) sin82k1 (I-I) (1--' .(8

Integrating both sides of identity (8) with respect to x within

limits of zero to unity, we find in accordance with designation (3)

0 m 12 (2n- 3) X,.s--3 (2nf-2) X,a+ (2n-- 1) Xj,

whence

X. 3LM 2- X.--2 s 3.,,~26 n-2# 3, (9)
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Formula (9) makes it possible to express any integral Xn by

integrals X0 and X1 , which in turn are expressed according to

formulas (6) and (7) by oomplhte elliptic integrals of the first and

second kinds.

In particular, from formula (9) it follows that

X1- (3Xj,-,, .!.
x,-- A(2?, x,)-TOIC, 4X,.1

Substituting (10) into (4), we find

c.=/2(X-X, , C (X.-x). (11)

Substituting (6) and (7) into (11), we have

CA 2K (Z2), (12)

-- M, 2E (L2)-K( .

From tables of complete elliptic integrals find (see, for example,

Ya. Shpil'reyn, Tables of Special Functions, Part II):

K (2) "1,854,07, E () "1,3504. (13)

Substituting (13) into (12), we obtain

m=.19S14, c, . 0,87403, c, -0,71888. (14)

We performed the calculation of integrals c0 and c2 in Chapter III

(for integrals c 0 and c2 we used designations Jl and J2

'See formula (150) of Chapter III.
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2. Let us consider, further, the definite integral

Assuming in (15) t 1- x 2  we obtain

We find further

i _ _ _ _ __ 
( 1 7 )

Substitutihg (17) into (16), we obtain

v (-W01

-a ' 's ".. .. . . (18)

Introducing designation

1 ~ ~ ~ 41- Will) I/ (I 81 (1 -s) (19

and using designation (5). we can give to formula (18) the form
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(20)

The elliptic integral R(y, k) is expressed by elliptic integrals of

the fir't -and second kinds. .this tAnfbriilion is based' on formulas

of the addition of elliptic integrals, which we derive below.

3,. In order to obtain formulas of the 'addition of elliptic

integrals, let us examine the differential equation

where

'(22)

with the initial condltion

at s when s-0 (S'i%. (23)

Dividing the variables in the differential equation (21), we obtain

iX dy

whence, in accordance with the initial condition (23),

X

or

(24)

Using for the elliptic integral of the first kind designation
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wk (25)

we will be able to give to relation (24) the form

rhus, we obtained the solution of differential equation (21)

in elliptic integrals. At the,same time,. as we,will pow show, fbr

this diffeiential equation the algebralc integral can, be.obtaine-d

If y as a function of x satisfies differential equation (21)A

then

M (i- + 41)- P (S XPVA()

wa~ C) A()J ,~'(z' £v)+ .( ,) "' ..Jry-
. A a +4() . (a)+:' (y)l ' -as ()-' ~y

whence

(27)

according to (22)

whence

Thus,

. -)r (u v --73(2 + k'1*(- (28)
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On the other hand

a (Y =l- Y. s)IO + io - f.,- (0, e -, W .!

whence

-. • , - - (29)

Substituting (28) and (29) into (27), we find

~J~ :) *h ~) a(+X&1P) (30)

Hence

1..(31)

where a is an arbitrary constant.

Let us define now the arbitrary constant c in accordance with

initial condition (23). Assuming in (31) x = 0, z , we find

c=&. •(32)

Substituting (32) into (31), we obtain

(33)

Thus,,by integrating differential equation (21) according to

the initial condition (2:3'), we obtained the solution in two forms -

in the form of relation (26) and in the form of relation (33).

Thus, if numbers .x, y and z satisfy relation (33), relation (26)

takes place between elliptic integrals of the first kind with upper
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limits x, y and z. We arrived at the formula of addition for the

elliptic integral of the first kind. It is clear directly from

relation (26) that this formula is accurate only when x and y satisfy

the inequality

I (, )+@,k)t .p(;, k)-K(k). (34)

Let us now derive the formula of addition of the elliptic integral

of the first kind when

,, (k,CF(,.k)+ (y,, k) 2K(k). (35)

For this we replace the initial condition (23) by initial condition

y-i when xnx' (O<?,41). (36)

Integrating differential equation (21) according to the initial

condition (36), we find

a Y4

or:

___ de_ d~q C __Aq " ) " y- A(I)
T(-) W 2 (Y) (i')

i.e.,

F(# k)+F(y, k)- K(k)+F(, k). (37)

On the other hand, differential equation (21) has the solution

(33), where x is the arbitrary constant. Let us define constant z in

accordance with initial condition (36). Assuming in (33) x = z' and
y - 1, we. find

1-A's, (38)
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Thus, according to condition (35) instead of the formula of

addition (26) we will have the forniula of addition (37), where z' is

connected with z by relation (38). Let us convert formula (37).

From relation (38) we find

m2k'(l kt):'da' 4:-2k'sdt sm .7Am

whence

i P ci (39)

From (38) it follows that

- : j when s'a=0. (40)

Integrating (39) and taking into account (40), we find

whence

,~ds' is : 3-KkF(z, L). (.41)
0 F

Substituting (41) into (37), we obtain the formula of addition

F (z, A)+ F(y, )-2 k z ) (42)

Let us derive now the formula of addition for elliptic integrals of

the second kind.

Using identity (29), we can give to relation (33) the form
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or

s) =.-,(Y) M . , (43)

But if y as a function of x satisfies relation (33), then y satisfies

the differential equation (21). Using relation (21), we can give

to equality (43) the form

(!z+ ,y -+z4d x , , y). (44)

Taking the initial conditions (23), we find from (44)

or

. dz t6 - dyky,(5

Using for the elliptic integral of the second kind the designation

i -k$ z i dz= E , k), (46)

we will be able to give to relation (45) the form

E (z,k) + E(y,, k ) -E(z, A-)-f- +'zy. (47)

Thus, if x, y and z satisfy relation (33) and inequality

(34), for elliptic integrals of the second kind the formula of

addition (47) takes place. If x and y satisfy inequality (35), then,

using initial conditions (36), we find from (44)
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S!~zdx+ !Z dU= k's (x - e),4 (y)

or

- '  S k s  d. -

d2 - i

-- - kz (zy-e).

Using designations (46) and (5), we will be able to give to this

relation the form

E(z, k)+E(y, A*),-,E(k)+ E(z', k) + k' (xy - '), (48)

From relations (38) and (39) it follows that

I - k'S"a I . "ks As
dz" - (49)

Integrating (49) and taking into account (40), we obtain

A d dd

(z, )---P P,) () -(-k) ink (50)
1 . S

We find further

k, d s I T - 3 ' A., t -l l':' A:' 1 -Z __

A, (I - -:2) (1 - _kt:') - Ath, (t - 0':0) -0:1 (1 - 0=)
T " (t0'- k -' 3:1 ) ....2)

As - 20- + kOz4 t -A's 1A-(I- il)a(3) " -T- J - A,,£t) AO (51)

Using identity (51), we find according to (50)
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s(e',k)U S NO) Tsr- k-s
S

. . g '-:

Further, according to (38)

(53)

Substituting (53) into (52), we find

E(', k)=E(k)-E(z k)+k'. (54)

Substituting (54) into (48), we obtain the formula of addition

SE(s, A)+E(,y, k) - 2E(k)-E( + k)+kzxt. (55)

Joining formulas of addition (26), (42), (47) and (55), we will

finally have

F(=,/ )-) F@ )= (z. k),

E (x, k) + E(y k)= E (Z k) +kWxy.
when IF(z, k)+F(y, k) 1K(k),

F(z, k)+F(, k) = 2K (k)- P(, k), (56)
E (z, k) + E (y, k) - 2E (I.)-E(Z, E k) + '

when K(k)4F(z, k)+F(y, k),2K (k),

where

I - ~t/-

4. Let us turn to the transformation of the elliptic integralt1 fl ) xA) (57)
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We will first assume that O<y<i. Since in this case when O<z<

IF(z, k)+F(-y,k)<X(k),

we will have, according to the formula of addition (56)

F jz, k)+p(- y, k)- F(C, k), 1 (58)
k x ) + E ( , k) - k' - '. 0< Z=< 1,

where

(59)

But

C F k), (60)

and, analogously,

E(-y, k)-E (y, k). (61)

Thus, formulas (58) can be given the form

F(z, k)-F , .) P( , k). (62)E (*, k) - 9(y, 1.) - E(.) )- k'xz, 0o< x< 1..

Let us designate, further, by y' the number for which

F (y', k) j F y, k)=-K (k). (63)

Then

O<F(z, k)+F(y, k)<K when 0<x<y',
K<F(x, k)+F(y, k)<2K when y'<z<It

and according to formulas of addition (56) we will have
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F(r, k)*F@, k)=iF(:, A), 1 (64)
E(, k)+ E(, k= E (z, k) + k&zyz, 0 < z < Y

F(Z, y)+F(Y. k) w2(k)-F( Z k). (65)
E(z, k)+Ey, h)-2E(k)-E(,, k)+k'xy4 y'<z< J

From formulas (62), (64) and (65) we derive

E(r, k)-E(C, k)'=2E(, k)-k'xy(z+Q when O<x<v,
E(, k)+E(, k)=2E(k)-2E(y, k)+V'zy(z+(), (66)

when y <x<.J)

Further, according to (56) and (59),

2x¢, (67)

Substituting (67) into (66), we find

1--, 0 (1 )+E, 'k)+E(Y, k)

when O<z<y', i (68)
... (y z' E P.)+E (z, k) + E(y, .)- E (k)

when '<z<i 

Multiplying both sides of eaualities (68) by dx!A(x) and

integrating with respect to x, we find-(considering that z and

depend on a):

ky () Z2tdx I E(, k) dx '

U&,

t 1(69)
z2s dx as1 9(Z.,k) dz_

I I

(k) d dx

whence



.1 1 V
4

ye u y

xS dz )d I (. )

k)d ( k) ,s (70)

9 W9

Differentiating with respect to x both sides of the first of relations

(62), we find

I i dc

whence

clx d" O<z<I. (71)

Differentiating with respect to x both sides of the first of

relations (64) and the first of relations (65), we find

I Id I I da(Z) :z Oy</ z=- ), <=.<I,

whence

dz ds dz id: ,

' < < (72)

further, from (59) and (56) we find

C-y when z=O. C= I when ==1

zy when X. (y')+(v) when x- ', (73)I-ky Ihn z0 ==,ky '
=--- when x= i.

Introducing designatioas - Y and y-+'(,- we find in

accordance with formulas (71), (72) and (73):



; E'.r --(ECAi* E(s,")dz A. E('d^

3 V -. -l*
S S

VV

since function 0(4 according to (61) is odd. Further, according

to (63)

ds aw C 02 i K( -  F y , k) - P (y, k). ( 7 5)WO 0

Substituting (74) and (85) into (70), we find

I! S (44 ZK (k) ( (y, k)-E ( k)P, k). (76)

r Thus, when O<y<I we arrived at the relationI
( L 'd"

• ' ,/ i---) 0 " - ' . '
(77)

Quite analogously, by using formulas of addition of elliptic
integrals corresponding case y > 1, we can obtain relations

IK-k5 l2zt dy+ Z(k) Yi1 (y,, A k'()'-1- 'v') - (78)

Z M )t - y d - -1(k) dy
Ilk k)-- --- Ilk ,. (79)

Al('y y- 1)k''.1

v> Ilk.
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We restrict ourself to the formal derivation of formulas (78) and

(79) from formula (77).

Assuming in the right side of formula (77)

.we obtain

p ~ V

1 (jO k) ="(80)

When t<y<. we have

1. " ___ "~ -.F_ -

the imaginary part, (81)

and similarly

U V
__"''dy -+ the imaginary part (82)

Substituting (81) and (82) into (80, we find

-(kL dz + 9 (hi)
a (Y, k)- I-

+ the imaginary part. (83)

But the left side in relation (83) is the real part. Consequently
the imaginary part of the expression standing in the right side of
relation (83) must be equal to zero, and we arrive at formula (78).

Assuming in the right side of formula (78)
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we obtain

-1k ¥ !'z' d v-E (k') t I(y'-1) (k'y'- 1)

2160 ( 1), (410 . (84)

When we have

.! s .' + the imaginary part, (85)

and analogously

_______)p-i+ the imaginary part. (86)

Substituting (85) and (86) into (84), we find

I k 0 - d- .1k)3V
@,k -k,, J/( ,- 1) (k'yj' - t) -+

+ the imaginary part. (87)

But the left side in relation (87) is the real part. Conse-
quently, the imaginary part of the expression standing in the right
side of relation (87) must be equal to zero, and we arrive at

formula (79).

Thus, elliptic integral I(y, k) is expressed by the elliptic
integrals of the first and second kinds.

5. Above we obtained for the elliptic integral.

a'I' d0
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the expression (see formula (80))

,,-€rJ -r Y.[ 1(88)-' 4 v'j , *).

Let us transform this expression, using the above formulas for

the elliptic integral H(y, k). Since when O<.<i

f- _ > ,.I</- <2

in the elliptic integral I) y> , and in integral

]I i+2 ) 1c <<-. Thus, for the transformation of the first

of these integrals we must use formula (79) and for second - formula

(78). Assuming in formula (79) Y/j- k-- , and in formula (78)

Y= 2
MT 2 we find

YT, Y,

'TV
2if 2..

SF - 2 (89)

I +

2 ( I (90)
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Assuming y.,-, we find

dy/ (91)
vr .

d.V (9 2 )

Using identity

--

- -. p -'-". .9

2; 2-i - I ' - / -

we find

- • ..

1 ~~ ~ -- 1170111
2 2__ _ _ _ _

.a / - - [ -287

i . +1 . . . -, ,. .d_.. .

I,
I
I 
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Further

0 - - ,e

Substituting (93) and (94) into (91) and (92), we find

dy S-M 2 )+ ' =,(5

• /-',G,-'s0+ /+' -+ ()

(I (8

Substituting (95) into (89), we obtain

(K 2 (I/t )]E -(t - K (4..(96)
2 2

Assuming y- we frind

2- y ~fI T -I (97)
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M
dl ((98)

Using identity

I i,_.+,1  (J- 7,-

we find

) (I _-V" -

- .[- I ''+

-2F E. () I |M , )+ -T'' (99)

Substituting (99) into (97), we obtain

-(j -_0(100)
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Substituting (98) and (100) into (90), we find

'/i).(101)

Substituting (96) and (101) into (88), we obtain

,;, 2,.~)K(). (TT,~

or finally

2 2()/1~,~) (12

6. In Chapter II, solving the two-dimensional contact problem

of' the theory o1' elasticity for that case when the initial distance

between points of' compressible bodies touching with compression is

proportional to Izik(x - distance to the initial point of contact),
arrived at the following formulas for pressure p() and half-wI)dth

of the region of' contact c (formulas (103) and (104) of Chapter II):
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I|

P ( It - 0 x )0

'P ags~ ' k d(103)

a p + It (104)

For the case kc.$I,, assuming lxl=a. and using designations
(1) and (15) for appropriate elliptic integrals, we have

p (4)D 0 <'i= ( o < it (105)

a !P F 0 +p 0,+_) 1 I ( 106 )
I. AC, J •

Substituting into (105) and (106) values of elliptic integrals

CI and J(M) from (12) and (102) we find

f ." -(VI-E )]} (107)
,/

T . (,_ + 01 2) I (108)1K (L17Q)l

Assuming eCOS'?, and t,=,sin , w- will have

V2~ 2

prn-P[sinV1+cos'q+

dl

d+ call d?) (109)

!? --arccos •

tj(~ 1



We arrived, thus, at the formula convenient for calculations

which determines the pressure p(x) in the region of contact. In

accordance with formula (109) a graph of the distribution of pressure

in the region of contact, located for the examined case in Chapter II

(Fig. 11) is plotted.

7. In Chapter III, by examining the axfsymmetrical contact

problem of the theory of elasticity for the c se when the initial

distance between points of compressible bodies, which touch upon

compression, is proportional to r;"'(r- distance to the axis of

axsymmetry), we arrived at the following formula for pressure p(r) in

the region of contact

V;' a , 0 < ,< aP ( 110)

where

!( )"- tI 0 a~ < i,(ii

see formulas (157) and (158) of Chapter III.

Assuming tmcosl , p=,os'?, we find

ICOS' .C S (112)
C . S

Using identity

2-t, sin'4B = - ,

C04 t;:, 1/ :_
20I - sin its Cos- , ii

i
il , il i

,z +

we find
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ucot ,, /o -

ost' ,4

+- 2 drj.(13

Substituting (113) into (112), we obtain

sini
2' ""n ? ). (1141

S: suming in (110) r-,acosl9 and substituting into (110) the

expression for /(cos'?) from (114), we find

P2- [in? JI+,co,,.+,

+ 2os,? /I.-Lsing0. (115)

? =:, are Cos

Comparing formulas (115) with formulas (109), we are convinced

of the fact that the distribution of pressure in the region of

contact in the examined axisymmetrical contact problem is the same

as that in the corresponding two-dimensional problem of the theory

of elasticity.
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APPENDIX 2

THE APPROXIMATE SOLUTION OF CERTAIN INTEGRAL
EQUATIONS OF THE CONTACT PROBLEM

1. In Chapter II, by examining the problem on the compression

of two circular cylinders, the radii of which are almost equal, we

showed that the solution to this problem is reduced to the solution

of integro-differential Prandtl equation from the theory of an

airfoil of finite span and discussed the method of solution of this

equation proposed by I. Vekua [Translator's note: name not verified].

Examining, further, the problem of pressure of a rigid stamp on the

elastic half-plane taking into account surface changes of the elastic

medium, we arrived at an analogous integro-differential equation,

the approximate solution of which can also be obtained by the method

of I. Vekua. After Dne of the functions entering into the integro-

differential equation is replaced by the properly constructed

approximate expression, following the method of I. Vekua, the

solution of such an integro-differential equation in closed form can

be obtained. Here we arrive, however, at the calculation of definite

integrals, which are not expressed in elementary functions, and in

connection with this for numerical calculations general methods of

approximation of the solution of integral equations can be more

convenient. Taking into account graphs illustrating the corresponding

sections of Chapter I!, we used the method of finite differences.

This method consists in the fact that the unknown function is

assumed variable not continuously, but ty jumps. Dividing the

interval of' the chance in the unknown function into n parts and

assuming t:!at in each of t ,Atained subintervals this function



maintains a constant value, we reduce the solution of the integral

equation to the detecting of these n values of the unknown function.

By proper selection of these values we can achieve that the integral

equation is satisfied at n points of that interval in which this

equation should be satisfied. We arrive, thus, to the solution of the

system of n linear equations with n unknowns. Solving these equations,

we will obtain the approximate expression for the unknown function

in the form of a step function, changing by Jumps. Constructing

its graph and smoothing the Jumps, we obtain finally a smooth curve,

which depicts the approximate solution of the integral equation.

Below we give the calculations made by us.

2. As we showed in Chapter II, § 7, in the case of the

compression of two circular cylinders, the radii of which are almost

equal, pressure p(O) in the region of contact is determined by the

integral equation [Chapter II, equation (31)]:

-(x, ,,+o;,) S p(9')sizJP ( ox((T(-?,)- i-n-j'...

•t -(- ) 0| -c)- C os , --a.o <?7 <% 1

in order to exclude from equation (1) the unknown constant a,

in (1) we set $ = 0. Let us obtain

2(3~r,+Or,) 5 p(?)cosgIintg-d-

to
--(x~r,+w~r,) p(?")sinJ?'d?'+22,r, p(?')dT'--. (2)

Substituting a from (2) into (1), we hove

S"
2 (Oir,+ O,r.) 5P(' [C3s(? - ') rd tg~' cos ?O fcos ?'I itgL-] d?

to+~ . p ( ? ') [sin I -? -coo ? si a 'l d?' -t

to+ Co 
?< 

<

+&r(-s?) 5 p (') d'.:(r.-r,) (i-Co8 ?), -?. < ?<9.. (3?)

+20.) 1t



Integral equation (3) Jointly with condition

90

S° p(?)c4?d? (4)

where P - the compressing force, determines the angle 0 and pressure

p(O) in the region of contact -%0 < < 00. Since function p(o)

should be due to even symmetry, we have

0

2(0,r 1+Ogrs) x pvj) [Co8(V-v)1ntgU L'J-
-:0

-co? cos ?' In tg M1 'lJ

(tair,+ WIP) 5P() [ginI? ~o$ inID1. +?
to - 0 %

+20,r, (t-cos ) p ( ?')° ,.,

CosCos 'Intg d,, - (X,,, + x,,,) P()(8inI9+

9

S1-coap ?in p']d?'+ 20ar,(I- co( ) - p (?1 d,?

In virtue of which the integral equation (3) can be given the

following form

¢O,,,+ o.,-). )  C[os,+ In) t' Lf-- --+
U

+Cos (? -r?')ntI n I -g 2cos cosp'ntgS dT -

-( ,,,~ "r, i ., ) p/ ( ,? ' ) ! , i n ! , -, + s i n ! ? , + , i

.0

U

=(r. - r,) (i-Cos ,, -? < ?.( 5)



Let us divide the interval (0, 40) into n equal parts, and we

will consider that in each of the obtained subintervals function p($)

maintains a constant value:

- when (k-1)0<?<k3, (6)

ftl

Substituting p(o) from (6) into (5), we obtain

Ic~ Co Int

-'- A,

2 o i ?+ 40" (I - 3 P ,Sd

A-I (&-I)&

(P P)0-CsA<9<(7)

In the right and left sides of relation (7) the odd functions of

* stand. Consequently, if relation (7) takes place for any positive

value of *, then it takes place for the corresponding (equal in
absolute value) negative value of *. Further, when = 0 both sides

of relation (7) turn into zero and, consequently, are equal to

each other. Thus, if one were to determine pl, P2' ''' Pn in such

a manner that relation (7) is fulfilled when .j). 2:)....,n%, then it

will be fulfilled at all points ' .c1(1=-n,..., -1, 0, 1, ... , n).

Assuming in (7) ?= 10(1 =-1, 2, ... , n), we obtain the system of

equations

2 (0 'r.P ! [ cos(1U-?')Int '2j1J+
k-1 (k-)

cos(10+?V)Intg!!.?-2colOcos ?' In t g d?'-

. -(u.,.+r,)j' Pa [inh1o- 'j+sin(10+?I.. _
h-, (A-I) 8

A' DS

AI (k-O}S



Let us turn to calculation of definite integrals appearing

in equations (8). Let us find

when k<!

cos( I tS! ( d?'l -,° . .

in (L- k) 0 In tg +
t-k'82

when k>L1

cos (10-') IntIdg' -

Ca- I)

(co+-) (10-i tg j)5

i lo+ ?A-I'

' Os2(i +c) tg -,-o .s1cO latgi- k 0

s in (1:?+) n " 1  -i ( ) n t

lin (- + k) 0 In tg (V -- sin ( +k -) 0 In tg ( + t) 0..

Thus,

(*0 cos (10- 9') In tg +

+ ~ ~ -- -Co-1 ' nt t - 2 Cos la os ?' In tg d ,

+ 0 0nt +( k ]0('

-23-2cosla [sinkb lntgL - sin(k-1)O~ngL-



aI

Further: when k<1

umcoi(1 ~ C= k)JV - o (- - coB (I - k + 1)0*

when k>L+1

l -s~t 1 is n (-?' - 10) d?

C0 W-iO)[ - -cos(l-k)O+cos(l-k+l)O,

CS (I + k)1-+2 cos +i ?') d' ---

.- )

Thus,

tD ..

S [inliO-?'I+sin(10+?')-2coslOsin?'jd? "m

an C (L-k) lco (I- k) 0 - cos I- k + 1) o1 +

+ cos 1 + k-1) O-cos (L + k) + 2 c3 10 [cos kO-c'js (k-t) OJ, (10)

where

&(I) when k>O, )

when k<-i. I

Substituting (9) and (10) into (8), we obtain the system of

equations

2 .{ (O .,. + o...I [ .i o(l- k + I)O ~n ,g il-- + ' 1

22-sinL-k)la t I12 '+sin (I +k) 0 n tg 1.))

-sinl+ k -1) 0 n tg (1k- -)020] +

+ (,a,+x,r) { (L- k) [co (I- k + 1) 0 - cos (I - k) 01 +
+cos(l + k)0-cos(I + k-- 1)0) +

-1 '



t (-t~ 1 'IO I

+-einl.,,)oio - os(k-1)0 +20,,o

* (rs-r)(I- cos O), I 1,2, ... , n. (12)

Let us introduce designation

A,,-2(0jps+ s +.,. Ol,,,+ n ,tg I , 4.110 -s .,,,, c, _ n /I O] +

+(,r, +,r,) Z (k) [cos (k + 1) 0 - cos kO] + 20,rO. (13)

Then equations (12) can be given the form

a

i p, + . [ Al.k., - 2'cos I..)-(r, - r) (I -- cos l0), (1I4 )
h..l

I = t o 2, .. ,n,

since

(i+k--i)-u(k-i)-s when k)j,L>1

according to (11).

When k>O we have

A k. 2 (O,r,+O,r,) x

+ (xlr1 +x,r,) (cos(k+ 1)0 -cos kO] -2rl&. ( 5)

When k;i we have alLo

__ 2 (Or, + 0,r,) X
× [_ s (,,-l O ntg,! +,so kO ,, , -O]+

+ (.,r, + v,r,) [ - cos (k -I ) 0 + cos kO] + 20,r,O,

i.e.,



&-in (k-- )O I g(-y----0-+4Or&-2ci 2 {2&r+~

+(xr, + ,r,)(cos k- cos(k- 1) 1 + 2oro}...
S P(r-,)( -CosO), 1-1,2, ... nr. (12)

Let us introduce designation

Am(ii+Orsin(k+1) O n tg 1± .f0- sin kO In t9 1O-a+

+ (xr, +' t ) Z (k) [cos (k + 1) 0 - cos'kO] + 20,riO. (13)

Then equations (12) can be given the form

p (11-A + A,.. , - 2 cos 1 . ., (p, - r) (I - cas 10), ( 14 )

k-
1 -, 1, 2,. . n,

since

&(+-i)- (k-1) when k>1, 1>1

according to (11).

When k>O we have

Sk - 2 (0 ri+O,r,)X
x [ in(k+ I)OIn tg( + i) al tg kb -01

2 k I
+ (x~r, + ,r,)[(cos(k+ 1)0-cos kG] +201r,0. (15)

When k>1 we have also

A-_ = 2 (3,r, + O,r,) X

+ (zr, + ;,r,) [ - cos (k - 1) 0 + coD kO] + 20,r,O,

i.e.,



when k>1. (16)

Introducing, further, designations

P(k)-m2(0.p. +Or,) (sin kO In tgAh..ko) +

+(r,+j,r,)cosk0+20r,k8,. k>O, (17)

we can give to formula (15) the form

Ah=P(k + 1) -(k), k>O. (18)

Uniting formulas (14), (16), (17) and (18), we finally arrive

at the following system of equations for the determination of

unknowns p' P2 "' Pn:

p,% ( + ,.,-. _2 c0, i0 ak-) 3- ,) (1 - Co tO),

where I=, 2g..., n,
where ( 19 )

F(,)-2(01 ,. +O,r) sin ,, In tg" -kO)+

+ (mar, + ,"r,) cos kO + 2,rjkO..

3. We will subsequently assume that compressible cylinders

are made of one material, i.e.,

0 = 0 31 "s ,= 1, (2 0 )

where 0,.1P8 (+p)(I-2:) ,E- elastic modulus and )j - Poisson's

ratio of compressible bodies.

Since on the assumption that ra(iL of compresolte ey1 l i rior
are almost equal, it is possible to also ast;urne

r wrl=r. i



Then the expression for function F(k) in formula (19) will take

the form

P (k) -40, r sin k6 In tg -- 2%rk 0+ 2xr cos kO,

or

F (k) -20, (k), (22)

where

/(k),= -2 sinkO Intg- 7 kO-cosko, (23)

-(24)

Assuming further

6,t - - 2 0,, ( 25)

we will have in accordance with (19) and (22)

I8,%-/(k +1) -- I(k), k>O0, 3.4 ak,, h> 1. (26)

Substituting (25) into equations for the determination of

unknowns P1, ... , Pn (19), we obtain the equation

p, (2 , o3 1 A- , - Z-h - j.a) (1-cos )
& -I

1- 1, 2,..., n, (27)

where

Assur" In (2',")

Ph'z* j3 q, k , e1, 2, ... , n , ( K



we obtain the equation

( 2 cos IOA.,-.,t. .j - cos 1, 1 1, 2...., f, (30)

determining unknowns ql, q2  ... I qn" Solving equation (30) for

unknowns q1 2 q2 1 "''' q n' then by formula (29) we will manage to

find pl, P2 $ "..' Pn"

Below we give solutions of the system of equations (30) for

three values of angle *0: 300) 500 and 600, taking Poisson's ratio

V equal to 0.3 and setting n 5.

According to (24) when p = 0.3

c 2's3-

According to (23) we will have

(k) -- -2 sin k0 In tg "+ k- . ck). (31)

Since D.9kt when n = 5 we will have 0-6" when ?,-30, O-10" when

?o-.500, 0-12" when 0= 600.

Given below are values of differences k6/(k+1)--/(, calculated

in accordance with formula (31).

Table 4.

\ 30 St coo 300 50 600

t ,03." 1, t,,s7 6 5 0, 60161 0, 0S326 0,03709

1 0,13j o,. .. J:.1 6 0, 1'3G 1. 0,0&j.67 -O.OC01
2 0.3:III, 0.3,u2j O.3St1  7 0,O"5t' O,OO,s -0,0:02',
3 0 ,2 r0,2.6', 0,"'GI 1 8 0 ;'0G'&I-0 ,,I 5 -0.0G0
, 0,20106 1 0,4.7u10, it0ol 9 0 0,13- 0VOII 0,03;09



Substituting from this table differences 6 into equations (30)

and using here relations &.=. when kP> (see (26)), we obtain

equations

30'

0,27839q,-O, 18258q8 - 0,04031q, - 0,02020q, - 0,01266q, , 0,00518,

0,64959q, - 0,12505qg,-0,282coq,- 0,003t1g 6-- 0,05442q 4= 0,02186,

0,70081q + 0, 19207q, - 0,25672q5 --0,35660,"-, 14300g, = O,OiS9-,

0,8628291 + 0,3i882qu + O,O46Gq,-O,34501q,- 0,41828q 0,08616,

0,89252q, + 0,378849, + 0,14990q,-0,05 68 5qa- 0,44t5589, -0,13398.

0,44682q, - 0,30970q, - 0,07288q. - 0,03944. - 0,02720q, v= 0,01520,

1,01730q - 0,23508q, - 0,49261q- 0,1 7774q, - 0,1 1446q, = 0,030

1,17428q, + 0,25230q, - 0,47 780g1-- 0,6-178q,- O,2895Oqs 0,13398

1,1 83269, .. 0,39G06q, - 0,02304q,-0,65788q, - 0,7821 2qs 0,23397

I ,0S970q, + 0,45148q, +O, i0O 3Sq,- 0,22378q, - 0,82026q = 0,35721

= 60°

0,52452q, - 0,37610q - 0,09218q,- 0,05234 q, - 0,03802q, 0,0218(

It 17460q, - 0,30334q, - 0,608- 2q,-0,23260q, - 0,158 14qi = 0,6OSVI(

1 ,30514q, + 0,514Sq, - 0,61214q,- 0,81O14q,- 0,39214q, = 0,1903;

O231,08q, + 0,387SOq, - 0,V15 70 q.-.,86563Sq, - 1 ,01262q, - 0,330S

1,01 876q1 + 0,3802,q1% + 0,02024,- 0:36S22q,- 1,0929 tq,= 0,5000

Solutions of these equation3 are reduced by ,is in the followinp,

table.

Table q,.

1 2 3

* : j IQ:S7
, ') 1 1°

O . : 1)" 0 , 1 3 2 1 , 1 C3 ' % 0 , 0 $7 0 ,0.0 5 9 5

., 0. 0 0,1753
0 , 0.212 0.0.5



When v = 0.3 we have

a --. (32)

Substituting (32) into (29), we find

I M (33)

Substituting the found values of qk into (33), we obtain values

of Pk' reduced by us in the following table

Table Pk"

~. A ~ 1 2 441 '

1 302 , - , ,o7
Li Eso', Li 99s-0,2tbl v l. 1f, 0 , 0 ° , 1502 0,1027

figues lacd i ChpteEIs

Asuiginrlto (4)

63' when ( 7-- O< 8<. , 1,2591 1.0723.. .r999--
r .1

Since on the assumption p(O) Pk when (k-1)0< 9?<kb (see (6)),

the obtained table for values of 300, .50', and 600 of angle %
enables plotting a graph of pressure p as a function of angle ~

Smoothing the obtained step graphs, we arrive at those distributions

of pressure p in the region of contact which are represented on

figures placed in Chapter II.

Assuming in relation (4)

p(')=pI, when (k-1)0<?<k, k-1 2,..., n, rL='rP

we find

2y,p o? =,L



or

2Y. pk[sinkO-ain(k-i)0=--. (34)~k--I

Substituting (33) into (34), we obtain

j -sin (k -1) 01. (35)

Using tables of values qk' we find by formula (35)

P=0,1676 when %-.30",

9'= 0,7722 when %..-500,
~P

=2,1118 when ?,=60*.

Furthermore, obviously,

~p
'=0 when ?,=0,

since the compressing force should be equal to zero so that the

contact is carried out at the point. Thus, we obtain four points

for plotting the curve expressing the dependence of angle €0 on

atio P/E. Plotted along these four points is the curve given in

Chapter II which enables according to the difference in radii of

cylinders c, elastic modulus E and compressing force P finding angle

a and thui; determining dimensions of the region of contact.

Let u. recall that if the region of contact is small, i.e., at

small valutes of angle ,)0 for the solution of the examined contact
problem it is possible to use the fundamental equation of the flat

contact problem (as before we will assume that the conmpre(s-il lo

bodies are of '.he same material)

p (.')(Inx-.x, -,n, ',)dx'=Ax',



where

; A -1 A 2 ( 37 )

Z(x) - initial distance between points touching with compression.

Jointly with condition

a p(x)dz=.P (38)

equation (36) determines the pressure p(x) in the region of contact

and half-width of this region a. As we indicated in Chapter II,

the solution of this equation leads to formulas

-P [ -zP(z)'- V I-a 0i (39)

a2 (J I .bP) (40)

In Drder to obtain representation about the accuracy which is

ensured by the above used method of finite differences, we conducted

by this method the solution of equatioh (36), having divided the

half-interval of the change in function p(x) - a into 5 equal parts

and having assumed the pressure p to be constant in each of the

obtained subintervals. Finally we arrived at the solution of the

integral equation (36) depicted by the solid line on Fig. 54.

The dashed line on the same figure shows the exact solution of this

equation, plotted in accordance with formula (39). As we see, the

curves differ from each other very little.

Fig. 511.



As we already noted above, at small values of angle ¢0 for the

determination of the half-width of the region of contact a, i.e.,

quantity r sin %0, it is possible to use formula (40). Assuming in

(40) a = r sin $0, we findi 'p
luarcsin 2 v" - (41)

The initial distance I(x) between points touching with compres-

sion for the case of two circular cylinders will equal

whence according to (37)

2,d't.0 2 jPSP,)Pr

or, if one were to assume in the denominator r = r2  r,

A (42)

Substituting (42) into (41), we find

,• T ; . (43)

In particular, when p = 0.3 formula (43) gives

S12f.$2 P (44)

In Chapter II we compared the dependence of angle 0 on the

ratio P/EE, obtained as a result of the solution of the exact

integral equation of the problem (solid curve on the figure), with

the dependence of o on P/E, determined by relation (44) (dashed

curve on tth* same figure). As we see, for angle %0 = 30 ' formula

(44), base i 'n the assumption of the smallness of the regi-n of

contact, g ve considerablo. error, an,1 at larger values ^f anl,, &,,

It i:" 4'it. iappiloal Ic.



In Chapter II we also compared the distribution pressure p in

the region of contact, obtained as a result of the solution of

the exact integral equation of the problem (solid curves on the

figures), with the distribution of pressure determined by the

well-known approximate formula

PCos? (45)

(dashed curves on the same figures).

Presenting formula (45) in the form

) P cos Et
EC(1-S i .co$.+y,) r '

and using values found above of ratio P/Es for angles 0 = 300,

00 = 500, and 00 = 600, we find

p(?)P,0,1752 cos? -- when ?,-30, *
p(?)=0,5'G57 cos, -i when ?50, (46)

p(?)=1,4267 cosre -when 7-60.

In accordance with formulas (46) and dashed curves mentioned

are plotted.

4. By examining the problem about the pressure of a rigid

stamp on an elastic half-plane, taking into account surface changes

of the elastic medium, we arrived in Chapter II at the solution of

the integral equation [Chapter II, equation (286)]:

=P(4) -C p(a-)l1n -c [d,=,= -I <Z <1, (47)
-s

where p(x) - pressure under the stamp, a - half-width of the stamp,

o - parameter depending on elastic cons3tant3 and on surfa- properties

of that elastic medium on which the 3tamp presi:e7, and a - in1lflnite

constant. Together with condition



pI p(a-) d- P (148)

equation (47) uniquely determines the unknown function.

To plot graphs of the distribution of pressure under the stamp

given in Chapter II, for different values of parameter c, we also

used the method of finite differences. Below we give the calculations

made by us.

Since function p(x) is even, i.e., p(-x) = p(x), we have

p p(a-) InIv-2 I dv= p(-a-.) n I -- " d-m 5p(ac)la Z I dc,
0 1 U

and equation (47) can be given the form

=p(a )- 5 p(a)[ln', - [-1n(:+)]d -t, O<Z<I. (49)
U

Let us divide interval (0, a) into n equal parts, and in each

of the obtained subintervals we will consider the pressure p(x) to

be constant:

p(z)=p, when (I-).<z<k - k=1,2,...,n. (50)

Assuming in (50) x = aE, we find

p(a.)=pk when k- <Z< -, k-1,2,.. ,n. (51)

Let u.-- define now quantities pI, P2' "'' Pn with such

calculation that equation (49) is satisfied at n points Z=21-t

( =1, 2, ... , n), i.e., so that there will be Pqualities

"'P(a - - -c p(a-+) In +InQ C+-L ) d=a,

1 1, 2 . 52



Substituting (51) into (52), we obtain equations

!S I

Im1, 2, ,n

When k>1+1 we find

2. d- &c

, -- -.

ant1 In-

2k -21+i 2-7i+t U- 21- Ik- -6113 - *

when k41-t we find

1 1 -',,_ 2 dtm n In

2- -21+t z21- 2k-I 2-4-21-1 2 -?+t II
On n I 2n in I -

*.and, finally, when k = I we find

kinn

I.I-

221-I

V I2+( -) I( "')i " .a2.i4-
at 2n~

Thus,



2n-t 2k- 21 +t1 12k -21+11
In A Id 2- In -2A

k-

24-21-1 i 12k-21- I i km 1, 2,...1 n. (54)
2n 21 (

Further

35;2%,2 2n-. m
k-t ' ,-

a

'2+21 - 2 k'21- 2-1 21- 3 2k4-21-3 I,
2 n 2n 2n 2a n ,

ken..2P,..., Ino(55)

Substituting (54) and (55) into (5!j and replacing for the

convenience of calculations natural logarithms by common, we obtain

the system of equations

2k k-21-1 2-2l -I 2k-2-l 'k2
2. + - p h 2 - -+ 1 4 g 2 A 2 

) n -fl Y % i ~(6
2k€ - 21 -n |g  1 2h - 21 - I I + 21- I Il !2k 'l+ 21 - t

2A+2-32k + 21 - 3 2 ,!
.2- ig -- # -1 , 2, n, (56)1

where

.3 -- '-. aIg e = 0,43429. (57)

Substituting (51) into (48), we find

iP
. P X0 (58)

A-I

Equations (56) and (58) determine unknowns pI, P2 ) "''' Pn and

incidentally constant aM/c. Determining pl' P21 .... Pn in

accordance with formula (50) we obtain the approximate solution of

integral equation (47) in the form of a step function.



5. Assuming in (56) n = 5 and taking into account (58), we

obtain equations

(0,25686 + .) p, + 0,05052p, - 0,048 43p, - , 1093 Sp,--
'- 0, 15 -gp,= . 23f-= P

C 71

0,05052p= + (0,15791 + .) p, - 0,01039p, - 0,09305p,-'
S0,14468p, M P

-0,04843p,-0,01039p,+(O,1329+}.) p8 - 0,04573p.-aM P

-0,12236ps W 4 ,

- 0,t0934p, - 0,09305p, - 0,04573p, + (0,0S308 +).) p, -
. .-=- -0,07077p, = P

-0,15396p- 0,14468p, -O,12236p,-0,070 77p, +

+ (0, 06214 +,).) ,= *

E.xcluding from these equations aM/c - P/a, we obtain four

equations

(0,20634+) i)p, -(0,10739 + *,)p, -),3804p, -

- 0,016 29p, - 0,00928p, -0,

0.0@895p4 + (0,16830 + ).) p, - (0,12368 + ).) It, -
- 0,04732p, - 0,02232p, = 0,

0,0609ip, + 0,08266p, + (0,15902 + ).)p, --
-(0, t2971 +F k) p,- 0,05 159p, -= 0,

0,0462p, + 0,05 163p, + 0,07663p, + (0,15475 + X) p, -I~ (0, 13291 + ).) p, - 0,

which together with equation (58)

.1P

P+Pp, + P.+ P. 7

determine unknowns pI, P2 2 P3' P4 and p, . ., t gile given below

solutions of these equations for three vatuw.,; af priraet,-r c are

shown, namely: c 10, c = 1 and c =  .1 (i..., ack.urding to (57)

for X = 0.13644, X = 1.3644 and X i .t44).

FTD-MT-214-61-70



Table Pk"

2 3 4

to O, -658 0,38272 0, 4239 0, 515,7 . 0, 8121 -

PP P5 0.4 0 0.5791

0, t o,1,013 0,,.6 P 0,4982- 0,5025- 0, 5096-

Having plotted in accordance with formula (50) and the above

table Pk graphs of functions p(x) and smoothed them, we obtain for

o = 10, c = I and c = 0.1 distribution curves of pressure under the

stamp, given in Chapter II.

:, ,. _ : __ .

*
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